УДК 524.354.4/6-337; 524.882-337

МАГНИТНЫЕ ПОЛЯ И КВАЗИПЕРИОДИЧЕСКИЕ ОСЦИЛЛЯЦИИ ИЗЛУЧЕНИЯ ЧЕРНЫХ ДЫР

© 2011 М. Ю. Пиотрович, Н. А. Силантьев, Ю. Н. Гнедин, Т. М. Нацвлишвили

Учреждение Российской академии наук Главная (Пулковская) астрономическая обсерватория РАН, 196140 Санкт-Петербург.

Поступила в редакцию 25 января 2011 г.; принята в печать 29 марта 2011 г.

Имеются различные соотношения, связывающие между собой основные параметры черных дыр и активных галактических ядер. Часть из них имеет статистический характер, другие вытекают из теоретического рассмотрения эволюции этих объектов. В данной работе мы используем найденное в последние годы эмпирическое соотношение между характерной частотой квазипериодических осцилляций излучения ν_{br} черных дыр, их массами и скоростью аккреции вещества для определения величины магнитного поля B_H на горизонте черной дыры. Поскольку характерная частота может находиться из наблюдений, использование нового соотношения для оценок магнитного поля B_H может дать более обоснованные значения, так как мы уменьшаем число неизвестных или плохо установленных параметров систем (особенно это касается скорости аккреции \dot{M}). Типичные значения, которые мы нашли таким образом, $B_H \simeq 10^8$ Гаусс для черных дыр звездных масс и $B_H \simeq 10^4$ Гаусс для сверхмассивных черных дыр. Кроме того, в работе показано, что если линейная поляризация системы обусловлена излучением замагниченного аккреционного диска, то степень наблюдаемой поляризации $p \sim \nu_{br}^{-1/2}$.

Ключевые слова: пульсары, нейтронные звезды и черные дыры

1. ВВЕДЕНИЕ

Одной из актуальных проблем современной астрофизики является проблема возникновения и эволюции магнитнного поля в окрестности черных дыр. Недавно для активных галактических ядер и черных дыр звездных масс в двойных системах было найдено эмпирическое соотношение, связывающее между собой величины характерной частоты квазипериодических осцилляций (QPO) рентгеновского излучения этих объектов ν_{br} , скорости аккреции \dot{M} и массы черной дыры M_{BH} [1-3]. Такое соотношение даже получило название "плоскость переменности" ("variability plane"). Следует заметить, что существуют и другие соотношения, подтверждающие подобие между черными дырами звездных масс и сверхмассивными черными дырами в активных галактических ядрах [4].

Наша цель в данной работе, используя эти соотношения и общепринятую теорию магнитного соединения окрестности черной дыры с аккреционным диском, получить оценки магнитного поля на горизонте самой черной дыры B_H . Ясно, что использование вышеуказанных эмпирических соотношений делает эти оценки более обоснованными, так как мы определяем B_H непосредственно через наблюдаемую характерную частоту радио и рентгеновских вариаций систем.

Мы также сравним вышеупомянутые соотношения с более косвенными оценками, получаемыми из поляриметрических наблюдений [5], которые основаны на предположении, что наблюдаемая поляризация, в основном, определяется излучением замагниченного аккреционного диска, а магнитное поле в области излучения степенным образом связано с полем на горизонте черной дыры.

Форма наблюдаемой спектральной мощности обычно имеет лоренцевский вид [6, 7]. Характерная частота определяется как частота максимума этой мощности. Как оказалось, эта частота для активных галактических ядер, как правило, меньше характерной частоты для черных дыр звездных масс [8]. Тем не менее, зависимость этой частоты от массы и скорости аккреции подобна для обоих типов объектов. В логарифмических переменных эта зависимость имеет вид [2, 3]:

$$\log \nu_{br} = \log \dot{M} - 2\log M - 14.7 - 0.9\theta, \quad (1)$$

где \dot{M} — скорость аккреции в г с⁻¹, $M = M_{BH}/M_{\odot}$ — масса черной дыры в массах Солнца и θ — параметр, изменяющийся от нуля для мягкого состояния звездных черных дыр, до единицы в жестком состоянии черной дыры. Частота ν_{br} измеряется в герцах. Для активных галактических ядер $\theta = 0$ [1]. Уравнение (1) является уравнением плоскости в используемых логарифмических переменных. Интересно отметить, что первые два члена правой части выражения (1) входят в известную формулу для величины магнитного поля на горизонте черной дыры [9]:

$$B_H = \frac{\sqrt{2k_m \dot{M}c}}{R_H},\tag{2}$$

где радиус горизонта черной дыры *R_H* выражается формулой:

$$R_H = \frac{GM_{\odot}}{c^2}M(1 + \sqrt{1 - a_*^2}).$$
 (3)

В этих выражениях с — скорость света, G — гравитационная постоянная, a_* — безразмерный параметр Керра (спин), k_m — безразмерный параметр, характеризующий эффективность процесса магнитного взаимодействия черной дыры с аккреционным диском. Численно параметр k_m равен отношению магнитного давления к газовому. Если это взаимодействие велико, то $k_m > 1$. Если магнитное поле слабо воздействует на процесс аккреции, то $k_m < 1$. При равенстве этих процессов $k_m = 1$. Время установления локального равновесия обычно меньше времени глобальных изменений в системе. Поэтому, как правило, используют равновесное значение $k_m = 1$.

Процесс взаимодействия магнитного поля B_H вращающейся черной дыры с аккрецируемой плазмой впервые был рассмотрен в работе [10], а затем в целом ряде работ (см., например, [11, 12]). Вычисляя логарифм выражения (2), получаем:

$$2\log B_H = \log \dot{M} - 2\log M + 2\log f(a_*, k_m), \quad (4)$$

где

$$f(a_*, k_m) = \frac{c^2 \sqrt{2k_m c}}{GM.(1 + \sqrt{1 - a_*^2})}$$

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 66 № 3 2011

$$\simeq \frac{1.66\sqrt{k_m}}{1+\sqrt{1-a_*^2}}.$$
 (5)

Подставляя выражение $\log M - 2 \log M$ из уравнения (1) в уравнение (4), получаем искомую формулу для магнитного поля, зависящую от наблюдаемой характеристической частоты ν_{br} и функции $f(a_*, k_m)$:

$$B_H = \frac{\sqrt{\nu_{br} k_m}}{1 + \sqrt{1 - a_*^2}} \times 10^{7.57 + 0.45\theta}.$$
 (6)

Параметр $\theta < 1$ незначительно влияет на результат. В дальнейшем мы примем $\theta = 0$. Параметр Керра a_* изменяется в пределах от нуля (шварцшильдовская черная дыра) до единицы. Он также незначительно (максимум в 2 раза) может изменить оценку магнитного поля на горизонте. Таким образом, магнитное поле B_H сильнее всего зависит от выражения $\sqrt{\nu_{br}k_m}$, причем величина ν_{br} находится из наблюдений спектров излучения. Как уже говорилось выше, можно принять $k_m = 1$, которое соответствует состоянию локального равенства плотностей магнитной и кинетической энергий аккреционного потока вблизи горизонта событий. В дальнейших оценках мы будем использовать это значение параметра k_m .

2. ОЦЕНКИ МАГНИТНОГО ПОЛЯ ЧЕРНЫХ ДЫР ЗВЕЗДНЫХ МАСС

Мы начнем с оценок магнитного поля B_H для черных дыр в двойных рентгеновских системах. Здесь для оценок характеристической частоты ν_{br} используем известное соотношение из работы [13]:

$$\nu_{br} = 0.029 \varepsilon \dot{m}_{edd} \left(10^6 \frac{M_{\odot}}{M_{BH}} \right). \tag{7}$$

Злесь M_{BH} ____ масса черной дыры, $\dot{m}_{edd} = L/L_{edd}$ — скорость аккреции в эддингтоновских единицах, L — светимость объекта, $L_{edd} = 1.3 \times 10^{38} M_{BH} / M_{\odot}$ — эддингтоновская светимость, а ε — эффективность конверсии кинетической энергии аккрецирующего вещества в энергию излучения. Обычно принимают $\varepsilon = 0.1$ (именно это значение взято в работе [13]). Соотношение (7) зависит от ε и этим отличается от выражения (1). Для известного источника Суд Х-1 приняты оценки $M_{BH} \simeq 10 M_{\odot}$ и $\dot{m}_{edd} \simeq 0.1$. Это дает $\nu_{br} \simeq 29$ Гц и, согласно формуле (6), получаем оценку $B_H \simeq 2 \times 10^8$ Гс. Эта оценка совпадает с

Источник	$ u_{br}$, Гц	B_H , Гс	B_H , Гс
		$(a_* = 0)$	$(a_* = 0.998)$
GRO J1665-40	300	3.2×10^8	$6.4 imes 10^8$
H 1743-322	241	2.9×10^8	5.8×10^8
XTE 1550-64	276	$3.1 imes 10^8$	6.2×10^8
GRS 1915+105	168	2.4×10^8	4.8×10^8
4U 1630-47	164	2.4×10^8	4.8×10^8
XTE J1650-500	250	2.9×10^8	5.8×10^8
XTE 1859+228	190	2.6×10^8	$5.2 imes 10^8$

Таблица 1. Оценки магнитного поля В_Н для чёрных дыр звёздных масс

оценкой величины магнитного поля, полученной из поляриметрических наблюдений [14-16].

Для других черных дыр с массой порядка звездных масс характерные частоты лежат в интервале 160-300 Гц [11]. Формула (6) в этих случаях приводит к оценкам: $B_H \simeq (4-7) \times 10^8$ Гс. Оценки магнитного поля В_Н для ряда объектов приведены в Табл. 1. Важно отметить, что все эти магнитные поля оказываются порядка уже давно используемой оценки 10⁸ Гс. Наши оценки основаны на наблюдаемых значениях частот ν_{br} и тем самым показывают надёжность ранее принятых оценок. Оценки магнитного поля, как мы упоминали, лежат в пределах оценок для граничных значений $a_* = 0$ и $a_* = 1$, приведенных в Табл. 1. Отметим, что недавно авторы работы [17], используя теорию Новикова-Торна [18], оценили параметр a_* для ряда рентгеновских двойных систем с черными дырами. Результаты расчета авторов представлены в [17, Табл. 1]. Например, для известной рентгеновской двойной с черной дырой GRS 1915+105 значение параметра $a_* = 0.98$.

3. ОЦЕНКИ МАГНИТНОГО ПОЛЯ ЧЕРНЫХ ДЫР В АКТИВНЫХ ЯДРАХ ГАЛАКТИК

Для активных ядер галактик характерные частоты квазипериодических осцилляций лежат в пределах $10^{-3} - 10^{-7}$ Гц (см. [8]). Оценки по формуле (6) приводят к значениям $B_H \simeq 10^4 - 10^6$ Гс. Отметим, что для спина $a_* \simeq 1$ величина поля в два раза больше, чем для шварцшильдовских ($a_* = 0$) черных дыр. Результаты вычислений магнитного поля B_H приведены в Табл. 2. При составлении Табл. 2 мы использовали значения ν_{br} , приведенные в работе [8]. Разброс значений магнитного поля B_H в Табл. 2 значительно больше, чем в Табл. 1. По-видимому, это отражает бо́льшие вариации физических условий в активных галактических ядрах по сравнению с более компактными объектами, представляющими черные дыры звездных масс.

В работе [12] получена полуэмпирическая формула, связывающая магнитное поле B_H с массой черной дыры M_{BH} :

$$B_H = 10^{9.26} \left(\frac{M_{BH}}{M_{\odot}}\right)^{-0.81}.$$
 (8)

Интересно сравнить магнитные поля B_H , вычисленные по нашей формуле (6) и по формуле (8). Так, для AGN SDSS J0013-0951 имеем оценку (см.[19]) $M_{BH} \simeq 10^{5.91} M_{\odot}$. Формула (8) приводит к значению $B_H \simeq 3 \times 10^4$ Гс вместо значений (4.2 - 8)×10⁵, полученному по наблюдаемой частоте ν_{br} (см. Табл. 2), т.е. различие примерно на порядок. Однако следует отметить, что этот источник и несколько других (Mrk 766, Ark 564) имеют гораздо большие значения B_H , чем другие объекты, представленные в Табл. 2.

Заметим также, что подстановка формулы (8) в (6) приводит к связи $\nu_{br}k_m$ с массой черной дыры:

$$\nu_{br}k_m = (1 + \sqrt{1 - a_*^2})^2 10^{3.38} \left(\frac{M}{M_\odot}\right)^{-1.62} \tag{9}$$

ИЛИ

$$\frac{M}{M_{\odot}} = 10^{2.09} (1 + \sqrt{1 - a_*^2})^{1.23} (\nu_{br} k_m)^{-1.62} \quad (10)$$

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 66 № 3 2011

Из формулы (9) при $k_m = 1$ и $a_* = 0$ получается значение характеристической частоты $\nu_{br} \simeq 2.5 \times 10^{-6}$ Гц для рассмотренного выше объекта, вместо наблюдаемого значения $\nu_{br} \simeq 5 \times 10^{-4}$ Гц.

Формула (8), в отличие от формулы (6), не зависит от такого важного параметра, как \dot{M} . По этой причине, по-видимому, следует предпочесть для вычислений B_H формулу (6). Интересно отметить, что формула (8) неплохо пригодна и для чёрных дыр звёздных масс. Так, для Cyg X-1 она даёт значение $B_H \simeq 3 \times 10^8$ Гс, вместо значения $B_H \simeq 2 \times 10^8$ Гс по формуле (6) при $\nu_{br} \simeq 29$ Гц. Заметим, что пригодность формулы (8), найденной в работе [12] для ядер активных галактик, также и для черных дыр звездных масс, показана в ряде работ (см., например, [20]).

4. СООТНОШЕНИЕ МЕЖДУ ЛИНЕЙНОЙ ПОЛЯРИЗАЦИЕЙ И ХАРАКТЕРНОЙ ЧАСТОТОЙ QPO

Сильное магнитное поле на горизонте черной дыры, постепенно уменьшаясь, проникает в аккреционный диск. В большинстве моделей дисков принимается степенной закон спадания поля в диске. Наличие магнитного поля сильно деполяризует излучение аккреционного диска из-за фарадеевского вращения плоскости поляризации [21–24]. Излучение аккреционного диска мы наблюдаем как от точечного объекта, поэтому степень поляризации $p(\mu, \mathbf{B})$ и позиционный угол $\chi(\mu, \mathbf{B})$ являются величинами, усредненными по азимутальным углам излучающих площадок диска. В работе [5] представлены приближенные формулы для этих величин, которые имеют следующий вид:

$$p_{rel} = \frac{p(\mu, \mathbf{B})}{p(\mu)}$$
$$= \frac{1}{[1 + 2(a^2 + b^2) + (a^2 - b^2)^2]^{1/4}}, \quad (11)$$

$$\operatorname{tg} 2\chi = \frac{2a}{(1/p_{rel})^2 + 1 + b^2 - a^2}.$$
 (12)

Здесь μ — косинус угла между нормалью к диску **N** и направлением **n** на телескоп, $p(\mu)$ — известная величина степени поляризации, полученная Чандрасекаром для задачи Милна [25], значение $\chi = 0$ соответствует колебаниям электрического вектора

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 66 № 3 2011

волны перпендикулярно плоскости (**nN**). Безразмерные параметры *a* и *b* описывают деполяризацию излучения из-за фарадеевского вращения:

$$a = 0.8\lambda^2 B_z \mu, \ b = 0.8\lambda^2 B_\perp \sqrt{1 - \mu^2}.$$
 (13)

Здесь B_z — магнитное поле, направленное вдоль нормали к диску, $B_{\perp} = \sqrt{B_{\varphi}^2 + B_{\rho}^2}$ — поле, расположенное в плоскости диска. Длины волн λ измеряются в микронах, а магнитное поле — в гауссах.

Для больши́х значений параметров деполяризации $a, b \gg 1$ из формул (11), (12) и (6) следует:

$$p(\mu, \mathbf{B}) \sim \nu_{br}^{-1/2}, \ \text{tg} \, 2\chi \sim \nu_{br}^{1/2}$$
 (14)

для поля с $B_z >> B_\perp.$ В обратном случа
е $B_z << B_\perp$ имеем

$$\nu(\mu, \mathbf{B}) \sim \nu_{br}^{-1/2}, \ \chi = 0.$$
(15)

Эти соотношения предсказывают, что из двух источников одного вида ожидаемая линейная поляризация излучения будет больше у источника с меньшей характерной частотой квазипериодических осцилляций.

5. ЗАКЛЮЧЕНИЕ

Мы связали наблюдаемую зависимость между характерной частотой квазипериодических осцилляций излучения, массой черной дыры и скоростью аккреции вещества с известным механизмом взаимодействия магнитного поля черной дыры с аккреционным диском ("magnetic coupling"), чтобы получить значение магнитного поля на горизонте черной дыры как функцию характерной частоты и её спина. Оказалось, что у черных дыр звездных масс магнитное поле на горизонте порядка 10⁸ Гс, а для более массивных черных дыр это поле значительно меньше — порядка 10⁴ Гс, причем разброс оценок для массивных чёрных дыр существенно больше, чем для черных дыр звёздных масс. Этот разброс вызван разбросом в наблюдаемых характерных частотах квазипериодических осцилляций излучения.

БЛАГОДАРНОСТИ

Работа выполнена при частичной поддержке программы Президиума РАН № 19, программы ОФН РАН № 16, программы ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009–2013 годы (ГК № 02.740.11.0246), а также при поддержке президентской программы "Ведущие научные школы на 2010–2011 годы" (НШ-3645.2010.2).

ПИОТРОВИЧ и др.

Источник	$ u_{br}$, Гц	B_H , Гс	B_H , Гс
		$(a_* = 0)$	$(a_* = 0.998)$
3C 390.3	$2.7 imes 10^{-7}$	10^{4}	2×10^4
Mrk 421	$\sim 10^{-5}$	$5.8 imes 10^4$	1.2×10^5
Mrk 501	$\sim 10^{-5}$	$5.8 imes 10^4$	1.2×10^5
PKS 2155-304	$\sim 10^{-5}$	$5.8 imes 10^4$	1.2×10^5
NGC 5548	6.3×10^{-7}	1.5×10^4	2.8×10^4
Ark 564	2.3×10^{-3}	$9 imes 10^5$	$1.7 imes 10^6$
Mrk 766	6.1×10^{-4}	$4.5 imes 10^5$	8.6×10^5
NGC 4051	$5.05 imes 10^{-4}$	$4.2 imes 10^5$	$8 imes 10^5$
Fairall 9	4×10^{-7}	$1.9 imes 10^4$	$3.7 imes 10^4$
PG 0804+761	9.6×10^{-7}	1.8×10^4	3.6×10^4
NGC 3227	2×10^{-5}	$8.3 imes 10^3$	$1.7 imes 10^4$
NGC 3516	$2 imes 10^{-6}$	$2.6 imes 10^4$	4.9×10^4
NGC 3783	4×10^{-6}	$3.7 imes 10^4$	7×10^4
NGC 4151	1.3×10^{-6}	$2.1 imes 10^3$	4×10^3
NGC 4258	$2 imes 10^{-8}$	$2.6 imes 10^3$	$5 imes 10^3$
MCG-6-30-15	$7.7 imes 10^{-5}$	1.6×10^5	3×10^5
NGC 5506	$1.3 imes 10^{-5}$	$6.6 imes 10^4$	1.2×10^5
RE J1034+396	2.5×10^{-4}	2.9×10^5	4.6×10^5

Таблица 2. Оценки магнитного поля B_H для сверхмассивных чёрных дыр

СПИСОК ЛИТЕРАТУРЫ

- I. M. McHardy, E. Körding, C. Knigge, et al., Nature 444, 730 (2006).
- E. G. Körding, S. Migliari, R. Fender, et al., Monthly Notices Roy. Astronom. Soc. 380, 301 (2007).
- P. Casella, G. Ponti, A. Patruno, et al., Monthly Notices Roy. Astronom. Soc. 387, 1707 (2009).
- H. Falcke, E. Körding, S. Markoff, Astronom. and Astrophys. 414, 895 (2004).
- N. A. Silant'ev, M. Yu. Piotrovich, Yu. N. Gnedin, and T. M. Natsvlishvili, Astronom. and Astrophys. 507, 171 (2009).
- D. Psaltis, T. Belloni, M. van der Klis, Astrophys. J. 520, 262 (1999).
- 7. T. Belloni, J. Homan, O. Casella, et al., Astronom. and Astrophys. **440**, 207 (2005).
- 8. I. E. Papadakis, M. Sobolewska, P. Arevalo, et al., Astronom. and Astrophys. **494**, 905 (2009).
- R.-Y. Ma, F. Yang, D.-X. Wang, Astrophys. J. 671, 1981 (2007).

- 10. R. D. Blandford and R. L. Znajek, Monthly Notices Roy. Astronom. Soc. **179**, 433 (1977).
- 11. L. X. Li, Astronom. and Astrophys. **392**, 469 (2002).
- W. M. Zhang, Y. Lu, and S. N. Zhang, Chin. J. Astron. Astrophys. 5, 347 (2005). //astroph/0501365.
- 13. O. Gonzalez-Martin, I. Papadakis, P. Reig, and A. Zeras, arXiv:1010.2904 (2004).
- Yu. N. Gnedin, N. V. Borisov, T. M. Natsvlishvili, et al., Bull. Spec. Astrophys. Obs. 59, 52 (2006). //arXiv:astro-ph/0304158.
- 15. E. A. Karitskaya, N. G. Bockarev, S. Hubrig, et al., IAUS **259**, 137 (2009).
- 16. E. A. Karitskaya, N. G. Bockarev, S. Hubrig, et al., arXiv:0908.2719.
- 17. J. E. McClintock, R. Narayan, L. Gou, et al., arXiv:0911.5408.
- I. D. Novikov and K. S. Thorne, *in Black Holes, Les Houches*, Ed. by C. DeWitt and B. DeWitt (New York, Gordon And Breach, 1973).

- 19. G. La Mura, L. C. Popovich, S. Ciroi, et al., AIP Conf. Proc. **938**, 82 (2007).
- 20. R. Fender et al., arXiv:0706.3838.
- 21. A. Z. Dolginov, Yu. N. Gnedin, and N. A. Silant'ev, *Propagation and polarization of radiation in cosmic media* (Gordon & Breach, New York, 1995).
- 22. Yu. N. Gnedin and N. A. Silant'ev, Astrophys. Sp. Phys. Rev. 10, 1 (1997).
- 23. N. A. Silant'ev, Astronom. and Astrophys. **383**, 326 (2002).
- 24. E. Agol and O. Blaes, Monthly Notices Roy. Astronom. Soc. **282**, 965 (1996).
- 25. S. Chandrasekhar, *Radiative transfer* (Clarendon Press, Oxford, 1950).

MAGNETIC FIELDS AND QUASI-PERIODIC OSCILLATIONS OF BLACK HOLE RADIATION

M.Yu. Piotrovich, N.A. Silant'ev, Yu.N. Gnedin, T.M. Natsvlishvili

Various relations are found between the key parameters of black holes and active galactic nuclei. Some have a statistical property, others follow from the theoretical consideration of the evolution of these objects. In this paper we use a recently discovered empirical relation between the characteristic frequency of quasiperiodic oscillations of radiation ν_{br} of black holes, their masses and matter accretion rates to determine the magnetic field strength B_H at the black hole event horizon. Since the characteristic frequency can be determined from observations, the use of a new relation for the estimations of magnetic field B_H can yield more definite results, since we are decreasing the number of the unknown or poorly-determined parameters of objects (it especially concerns the accretion rate \dot{M}). The typical values which we have found are $B_H \simeq 10^8$ G for the stellar mass black holes, and $B_H \simeq 10^4$ G for the supermassive black holes. Besides, we demonstrate that if the linear polarization of an object is caused by the radiation of a magnetized accretion disk, then the degree of observable polarization is $p \sim \nu_{br}^{-1/2}$.

Key words: physical data and processes: black hole physics