УДК 524.827

НЕГАУССОВОСТЬ СТАТИСТИКИ ПИКОВ В КОНТРАСТНЫХ ПЯТНАХ WMAP ILC

© 2011 О. В. Верходанов^{1*}, А. А. Басова²

¹Специальная астрофизическая обсерватория, Нижний Архыз, 369167 Россия ²Санкт-Петербургский Государственный университет, Астрономическое отделение Поступила в редакцию 1 марта 2011 г.; принята в печать 5 апреля 2011 г.

Проводится исследование статистики изолированных максимумов и минимумов в области трех контрастных пятен в данных WMAP7 ILC. Показана негауссовость распределения сигнала в этих областях. Продемонстрировано, что негауссовы свойства связаны с проявлением низких гармоник ($\ell \leq 20$). Обсуждаются возможные причины этой негауссовости.

Ключевые слова: радиоисточники

1. ВВЕДЕНИЕ

Самой известной и широкоиспользуемой картой космического микроволнового фона (Cosmic Microwave Background — СМВ) является карта распределения анизотропии реликтового излучения, восстановленная из многочастотных наблюдений методом внутренней линейной комбинации (ILC — Internal Linear Combination) фоновых компонент [1]. Карта построена по данным наблюдений, проведенных с помощью спутника WMAP¹ (Wilkinson Microwave Anisotropy Probe) [1–4], в пяти частотных полосах: 23 ГГц (полоса К), 33 ГГц (полоса Ка), 41 ГГц (полоса Q), 61 ГГц (полоса V) и 94 ГГц (полоса W). В результате анализа данных WMAP первого, третьего, пятого и седьмого годов кроме карт анизотропии и поляризации СМВ, получены карты фоновых компонент (синхротронного и свободно-свободного излучения, излучения пыли), а также рассчитаны их спектры мощности.

Полная карта микроволнового фона неба на сравнительно низких мультиполях ($\ell \leq 150$) чрезвычайно интересна для исследования гауссовости распределения фонового сигнала. Предоставление данных в общее пользование привело к большому числу работ по исследованию статистики сигнала в различных диапазонах мультиполей. Как было отмечено в ряде работ [5–7], имеются серьезные аргументы, говорящие о том, что в данной карте на различных угловых масштабах присутствует остаточный вклад фоновых компонент, который, в частности, и дает обнаруживаемую негауссовость. Этот вклад может проявляться в обнаруженной ранее

связи в квадруполе между очищенной картой микроволнового фона и галактическими компонентами излучения [8–10]. Негауссовость сигнала в данных WMAP, кроме фазового анализа [5, 6, 11], была также обнаружена другими методами на различных угловых масштабах: с помощью функционалов Минковского [12], вейвлет—анализа [13], корреляционных функций [14], как асимметрия в распределении сигнала [15], а также другими методами.

Одним из способов проверки гауссовости карты является статистика пиков, вычисляемая как в отдельных областях сферы, так и на полной карте. Детальный разбор поведения этой статистиски рассмотрен в книге [16], в которой также рассматривается поведение функционалов Минковского, рассчитываемых для данных СМВ. Поведение статистики пиков по интегральным характеристикам близко к функционалу Минковского третьего рода — генусу.

В данной работе мы изучаем такую статистику для анализа поведения сигнала СМВ в области холодных и горячих пятен. Для анализа структуры сигнала и его амплитуды использовалась программа SExctractor² [17], разработанная в Institut de Astrophysique de Paris u Observatoire de Paris. SExtractor является программой, в результате работы которой строится каталог объектов, выделяемых на астрономическом изображении. Программа позволяет определять параметры объектов: амплитуду, положение, размер и ориентацию, и, таким образом, может быть использована для подсчета числа положительных и отрицательных пиковых значений флуктуаций температуры неба на выбранной площадке выше или ниже заданного уровня.

^{*}E-mail: vo@sao.ru

^lhttp://lambda.gsfc.nasa.gov

²http://terapix.iap.fr/soft/sextractor

Для проверки получаемой статистики мы также рассчитали 100 реализаций случайного гауссова поля космического микроволнового фона в космологической модели ACDM. Для этих реализаций мы повторили анализ статистики сигнала в выбранных участках неба, что и для карты ILC, и получили оценки допустимого уровня дисперсии подсчетов положительных и отрицательных пиков. Кроме того, мы использовали саму карту ILC для оценки и сравнения статистики пиков в случайных зонах, но при той же реализации шума. Карта ILC была построена с разрешением $\ell_{\rm max} = 150$ согласно представленному релизу данных WMAP7 [4]. Ниже мы приводим результаты нашего анализа.

2. ИССЛЕДУЕМЫЕ ЗОНЫ

Для исследования статистики сигнала мы выбрали области неба, известные как Холодное Пятно I и Холодное Пятно II [18], а также область со скоплением положительных пиков, которую мы будем называть горячей зоной (Рис. 1). Галактические координаты углов исследуемых областей следующие: горячая зона — $(b_1 = -30^\circ, l_1 = 195^\circ, b_2 = 30^\circ, l_2 = 255^\circ)$, Холодное Пятно I — $(b_1 = -30^\circ, l_1 = -15^\circ, b_2 = 10^\circ, l_2 = -50^\circ)$, Холодное Пятно II — $(b_1 = -70^\circ, l_1 = 195^\circ, b_2 = -45^\circ, l_2 = 220^\circ)$, а также случайное поле — $(b_1 = 10^\circ, l_1 = 10^\circ, b_2 = 50^\circ, l_2 = 60^\circ)$.

Холодное Пятно II, известное просто как Холодное Пятно (CS — Cold Spot), демонстрирует негауссовы свойства. На CS, видимое на картах исходного сигнала и СМВ, обратили внимание как на пятно, отклоняющееся от гауссовой статистики при применении вейвлет-анализа уже в данных первого года наблюдений WMAP [19-22]. Кроме того, Рудник и др. [23], используя карты NVSS, обнаружили в области CS понижение пространственной плотности радиоисточников. Отсюда они сделали предположение о существовании гигантского войда размером порядка 140 Мпк на красном смещении z < 1, вызывающего гравитационную аномалию, приводящую к интегральному эффекту Сакса-Вольфа [24] и проявляющуюся как CS. Были предложены также экзотические объяснения эффекта, такие как текстура — топологический дефект во время фазового перехода в ранней Вселенной [25, 26] или анизотропная космологическая модель Бьянки VII_h [27], в которой могут образовываться такие пятна в микроволновом фоне. Позднее было показано, что на данной карте на различных угловых масштабах присутствует остаточный вклад галактических фоновых компонент, который и дает обнаруживаемую негауссовость. Этот вклад может изменять свойства низких мультиполей $\ell \leq 20$ реликтового излучения, приводя к неустойчивому их отделению от мешающих компонент [10]. В частности,

влиянием этих мультиполей могут быть объяснены особенности CS, такие, как отклонение статистики кластеров пиков колебаний сигнала на карте вокруг пятна [28] — увеличение числа положительных пиков. Независимое изучение свойств пятна, обнаруженного в обзоре NVSS [29] в окрестности CS, и подсчеты радиоисточников в нем показали, что исследуемое Холодное Пятно, гигантские размеры и существование которого трудно объяснить в рамках космологической ΛCDM -модели, может быть простым статистическим отклонением, вызванным систематическими эффектами [30]. Также не были обнаружены особенности и при подсчетах внегалактических источников в этой области в различных диапазонах длин волн, что может говорить в пользу некосмологических объяснений этой аномалии [31].

Холодное Пятно I, центральное пятно в карте, проявляется в квадруполе и октуполе и включает центр Галактики. Оно является одним из проявлений аномалий низких мультиполей. Особенности его обсуждаются в работе [18], и там же делается вывод, что существование пятна такой глубины и такого размера не противоречит ΛCDM —космологической модели, а появление пятна подобного размера возле Галактического центра имеет вероятность порядка 5%. Во избежание путаницы ниже по тексту будем называть Холодное Пятно I "холодной зоной".

Рядом с холодной зоной на тех же галактических широтах находится горячая зона, в которой располагается кластер положительных пиков в пределах Галактических долгот $195^{\circ} < l < 255^{\circ}$ [31].

Обратим внимание, что все три особенности влияют на форму октуполя, показанную на Рис. 2, и, кроме того, связаны с проблемой "четырех пальцев", наблюдаемых в южном галактическом полушарии [18].

Кроме трех обозначенных зон, мы случайным образом выбрали поле, расположенное в более однородном по отношению к распределению дисперсии сигнала северном полушарии между галактической плоскостью и Северным галактическим полюсом, и назвали его случайным полем. Данная область будет использована для сравнительных исследований.

3. АНАЛИЗ СТАТИСТИКИ ПИКОВ

Статистика пиков, а именно число пиков выше определенного порога, является одним из методов оценки гауссового сигнала. Используя соответствующие оценки, можно перейти к одному из функционалов Минковского — генусу, определяемому как разность между числом изолированных максимумов и числом изолированных минимумов. В данной работе мы совершать переход к генусу не будем, так как диаграммы простых подсчетов уже

Рис. 1. Исследуемые зоны на карте ILC WMAP7 в Галактической системе координат. Сверху вниз слева направо показаны зоны с координатами углов: горячая зона ($b_1 = -30^\circ$, $l_1 = 195^\circ$, $b_2 = 30^\circ$, $l_2 = 255^\circ$), холодная зона ($b_1 = -30^\circ$, $l_1 = -15^\circ$, $b_2 = 10^\circ$, $l_2 = -50^\circ$), Холодное Пятно ($b_1 = -70^\circ$, $l_1 = 195^\circ$, $b_2 = -45^\circ$, $l_2 = 220^\circ$), случайное поле ($b_1 = 10^\circ$, $l_1 = 10^\circ$, $l_2 = 50^\circ$, $l_2 = 60^\circ$).

Рис. 2. Карта октуполя ILC WMAP7 в галактической системе координат.

являются показательной характеристикой распределений сигнала в выбранных площадках.

Анализ данных мы проводим для различных комбинаций сферических гармоник с дальнейшим выделением исследуемых областей из карты. Сферические гармоники мы получаем стандартным гармоническим разложением карты флуктуаций на сфере:

$$\Delta T(\theta, \phi) = \sum_{\ell=1}^{\ell_{max}} \sum_{m=-\ell}^{m=\ell} a_{\ell m} Y_{\ell m}(\theta, \phi), \qquad (1)$$

где $\Delta S(\theta, \phi)$ — флуктуации температуры на сфере в полярных координатах, ℓ — номер мультиполя,

m — номер моды мультиполя, ℓ_{max} — максимальный номер мультиполя, в идеале равный бесконечности. Карты с конечным разрешением ℓ_{max} генерировались из коэффициентов при сферических гармониках $a_{\ell m}$ утилитой cl2map пакета GLESP [32]. Сферические гармоники определены как

$$Y_{\ell m}(\theta,\phi) = \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(x) e^{im\phi}, \quad (2)$$
$$x = \cos\theta,$$

где $P_{\ell}^m(x)$ — присоединенные полиномы Лежандра. Для непрерывной функции $\Delta T(x,\phi)$ коэффи-

Рис. 3. Статистика пиков в исследуемых зонах на карте ILC WMAP7 в Галактической системе координат с разрешением $\ell_{max} \leq 150$. Сверху вниз слева направо показаны распределения для горячей зоны, холодной зоны, Холодного Пятна и случайного поля. Черным цветом отмечены подсчеты для карты WMAP7 ILC. Серым цветом показан 1 σ разброс допустимых значений, оцененный в 100 реализациях случайного гауссова поля в модели Λ CDM.

циенты разложения $a_{\ell m}$ выражаются как

$$a_{\ell m} = \int_{-1}^{1} dx \int_{0}^{2\pi} \Delta T(x,\phi) Y_{\ell m}^{*}(x,\phi) d\phi \,, \qquad (3)$$

где $Y_{\ell m}^*$ обозначает комплексное сопряжение $Y_{\ell m}$.

Параметры положительных и отрицательных пиков (в нашем случае достаточно одноамплитуды) определялись гаусс-анализом двумерных картах с помощью программы на SExctractor [17]. Карты отрицательного сигнала при анализе инвертировались. В каждой из площадок предварительно вычитался тренд, задаваемый параметрами режима работы программы по умолчанию. Свойства обнаружителя типа гауссанализа (вероятность ложной тревоги и вероятность правильного обнаружения в зависимости от порога детектирования) обсуждались ранее в [33]. В нашем случае, когда имеется механизм моделирования эксперимента в рамках заданной космологической модели и сравнения свойств для каждого порога в рамках одной гипотезы распределения, статистические характеристики обнаружителя уже не столь важны. Отметим также, что программа SExctractor тестировалась и применялась также для выделения радиосточников в миссии Planck [34]. В нашей работе подсчеты экстремумов N(T) были сделаны для карт с параметром разрешения $\ell_{max} = 150$ в уравнении (1). Размер бина δt гистограммы брался равным 0.3. И таким образом были заданы уровни $\Delta T_k = k \delta t$, для которых соответствующие подсчеты максимумов и минимумов T_p на площадке Ω , выделенной из карты $\Delta T(\theta, \phi)$, вычислялись как

$$N(T_{p_k}) = \sum_{\Omega} (T_p > \Delta T_k) \,. \tag{4}$$

Результаты построения распределения числа пиков в исследуемых областях приведены на Рис. 3. Серым цветом показаны подсчеты пиков для гауссового поля в ΛCDM—космологической модели, полученные аналогичной операцией на картах с тем же разрешением и в тех же координатах. Ширина полосы соответствует разбросу 1σ, оцененному по 100 реализациям случайного процесса.

439

Рис. 4. Статистика пиков в исследуемых зонах на карте ILC WMAP7 в Галактической системе координат с разрешением $\ell_{max} \leq 150$. Сверху вниз показаны распределения для горячей зоны, холодной зоны и Холодного Пятна. Черным цветом отмечены подсчеты для карты WMAP7 ILC. Серым цветом показан 1 σ разброс допустимых значений, оцененный в 100 случайных положений тех же площадок на самой карте ILC.

Рис. 5. Карты мультиполей двух в диапазонах $\ell \le 20$ (вверху) и $20 < \ell \le 150$ (внизу) для сигнала WMAP7 ILC.

Как видно из Рис. 3, для всех трех исследуемых зон наблюдается существенное проявление негауссовости как в форме распределения, так и в положении пиков. В области горячей зоны (Рис. 3, слева сверху) наблюдается значительное увеличение количества положительных пиков, образующих кластер на данной площадке и дающих хвост в распределении. При этом положение максимума в распределении на диаграмме сохраняется, что говорит о гауссовости распределения слабого сигнала. Для холодной зоны (Рис. 3, справа сверху) и Холодного Пятна (Рис. 3, слева снизу) распределения смещены в сторону отрицательного сигнала. В холодной зоне имеется хвост, вызванный увеличением числа отрицательных пиков, отсутствующий в области Холодного Пятна. Тестовая случайная зона демонстрирует полное совпадение с ЛСDМмоделью.

Для проверки, являются ли данные отклонения от нормального распределения свойствами сигнала в исследуемых областях, или они характерны для для шумовых свойств карты, мы сделали оценки статистики пиков для 100 случайных положений исследуемых площадок на карте ILC аналогично

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 66 № 4 2011

методике, предложенной в [35] и построили соответствующие гистограммы (Рис. 4). Подобный подход позволяет использовать шум самой карты для анализа значимости отклонений от ожидаемой (гауссовой) статистики. Разброс величин в гистограмме пиков для случайных положений площадок больше, чем получаемый в результате моделирования шума для ΛCDM —космологии, на что также было обращено внимание в [35]. В результате увеличения этого разброса гистограмма пиков для холодной зоны находится практически внутри ожидаемого разброса 1 σ . Для остальных областей отклонения остаются существенными.

В работе [28] было показано, что в области Холодного Пятна основной вклад в негауссовость в пространстве мультиполей дают низкие гармоники ($\ell \leq 20$), удаление которых возвращает статистику сигнала к гауссову распределению. Мы провели разделение по гармоникам и исследовали флуктуации карты в выделенном диапазоне мультиполей ($20 < \ell \leq 150$), задав соответствующие граничные

Рис. 6. Статистика пиков в исследуемых зонах на карте ILC WMAP7 в Галактической системе координат с разрешением $20 < \ell_{max} \le 150$. Сверху вниз показаны распределения для горячей зоны, холодной зоны и Холодного Пятна. Черным цветом отмечены подсчеты для карты WMAP7 ILC. Серым цветом показан 1 σ разброс допустимых значений, оцененный в 100 реализациях случайного гауссова поля в модели Λ CDM.

значения в гармоническом разложении:

$$\Delta T(\theta, \phi) = \sum_{\ell=21}^{150} \sum_{m=-\ell}^{m=\ell} a_{\ell m} Y_{\ell m}(\theta, \phi), \qquad (5)$$

На Рис. 5 приведены карты гармоник в двух диапазонах $\ell \le 20$ и $20 < \ell \le 150$. На Рис. 6 показаны распределения пиков в трех исследуемых зонах на картах с $20 < \ell \le 150$.

Анализ графика (Рис. 6) показывает, что для карт с $\ell > 20$ распределение пиков соответствует нормальной статистике. Это говорит о том, что основные негауссовы свойства привносятся в карту низкими мультиполями.

4. ЗАКЛЮЧЕНИЕ

Мы провели анализ трех выделяющихся областей на карте микроволнового фона WMAP7 ILC: двух холодных областей, включая Холодное Пятно, и одной горячей зоны. Методом подсчета изолированных максимумов и минимумов в этих зонах показано, что статистика значимо отклоняется от ожидаемой в моделях ACDM с гауссовыми искажениями сигнала. После разделения по гармоникам для карты с $\ell > 20$ статистика пиков в исследуемых зонах становится гауссовой. Этот факт указывает на то, что негауссова компонента содержится в мультиполях с $\ell \le 20$, что согласуется с выводами [28], полученными кластерным анализом окружающего сигнала для Холодного Пятна. Граница $\ell \leq 20$ задается размерами радиоизлучающих областей в плоскости нашей Галактики, и естественным предположением является гипотеза об остаточном негауссовом вкладе Галактики в выделенном микроволновом фоне. В пользу этого может говорить положение холодной и горячей зон. пересекающих Галактический экватор. Однако вопрос остается открытым, так как эти же зоны плюс Холодное Пятно задают форму октуполя (Рис. 2), который оказывается чувствительным к плоскости эклиптики. Отметим, что в отличие от квадруполя, положение октуполя (его фазовые характеристики) меняются слабо в зависимости от типа обработки (он сохраняется, в частности, и при разделении сигнала с учетом однородности выборки в пиксельном домене [36]). Если этот эффект имеет физическую природу, то можно говорить о дополнительном микроволновом излучении Солнечной системы (пыль или солнечный ветер), проявляющемся в положении исследуемых зон. Связано ли это с физическими свойствами или является результатом обработки данных WMAP, станет понятно с появлением открытых архивов (или раньше) и исследованиями миссии Planck.

БЛАГОДАРНОСТИ

Мы выражаем благодарность за возможность использования доступного архива NASA (NASA Legacy Archive), откуда были взяты данные WMAP. Мы также признательны за использование пакета HEALPix³ [37], с помощью которого были преобразованы карты WMAP в коэффициенты $a_{\ell m}$. В работе использован пакет GLESP⁴ второй версии [38, 39] для дальнейшего анализа данных СМВ на сфере. Работа частично поддержана грантом РФФИ No 09-07-00159. О.В.В. также благодарит за поддержку Фонд Дмитрия Зимина "Династия".

СПИСОК ЛИТЕРАТУРЫ

- 1. C. L. Bennett M. Halpern, G. Hinshaw, et al., Astrophys. J. Suppl. **148**, 1 (2003), astro-ph/0302207.
- G. Hinshaw, D. N. Spergel, L. Verde, et al., Astrophys. J. Suppl. 170, 288 (2007), astro-ph/0603451.
- G. Hinshaw, J. L. Weiland, R. S. Hill, et al., Astrophys. J. Suppl. 180, 225 (2009), arXiv:0803.0732.
- N. Jarosik, C. L. Bennett, J. Dunkley, et al., Astrophys. J. Suppl., **192**, 14 (2010), arXiv:1001.4744.
- L.-Y. Chiang, P. D. Naselsky, O. V. Verkhodanov, and M. J. Way, Astrophys. J. **590**, L65 (2003), astroph/0303643.
- P. D. Naselsky, A. G. Doroshkevich, and O. V. Verkhodanov, Astrophys. J. 599, L53 (2003), astro-ph/0310542.
- P. D. Naselsky, A. G. Doroshkevich, and O. V. Verkhodanov, Monthly Notices Roy. Astronom. Soc. 349, 695 (2004), astro-ph/0310601.
- 8. P. D. Naselsky and O. V. Verkhodanov, Int. J. Mod. Phys. D **17**, 179 (2008), astro-ph/0609409.
- 9. P. D. Naselsky and O. V. Verkhodanov, Astrophysical Bulletin **62**, 218 (2007).
- P. D. Naselsky, O. V. Verkhodanov, and M. T. B. Nielsen, Astrophysical Bulletin 63, 216 (2008), arXiv:0707.1484.
- P. Coles, P. Dineen, J. Earl, and D. Wright, Monthly Notices Roy. Astronom. Soc. 350, 989 (2004), astroph/0310252.
- 12. H. K. Eriksen, D. I. Novikov, P. B. Lilje, et al., Astrophys. J. **612**, 64 (2004).
- J. D. McEwen, M. P. Hobson, A. N. Lasenby, and D. J. Mortlock, Monthly Notices Roy. Astronom. Soc. 359, 1583 (2005).
- R. Tojeiro, P. G. Castro, A. F. Heavens, and S. Gupta, Monthly Notices Roy. Astronom. Soc. 365, 265 (2006).

³http://healpix.jpl.nasa.gov/

⁴http://www.glesp.nbi.dk

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 66 № 4 2011

- 15. F. K. Hansen, P. Cabella, D. Marinucci, and N. Vittorio, Astrophys. J. **607**, L67 (2004).
- 16. П. Д. Насельский, Д. И. Новиков, И. Д. Новиков, *Реликтовое излучение* (Наука, Москва, 2003).
- 17. E. Bertin and S. Arnouts, Astronom. and Astrophys. Suppl. Ser. **117**, 393 (1996).
- C. L. Bennett, R. S. Hill, G. Hinshaw, et al. Astrophys. J. Suppl., **192**, 17 (2010), arXiv:1001.4758.
- 19. P. Vielva, E. Martinez-Gonzlez, R. B. Barreiro, et al., Astrophys. J. **609**, 22 (2004), astro-ph/0310273.
- 20. L. Cayon, J. Jin, and A. Treaster, Monthly Notices Roy. Astronom. Soc. **362**, 826 (2005).
- 21. M. Cruz, E. Martinez-Gonzalez, P. Vielva, and L. Cayon, Monthly Notices Roy. Astronom. Soc. **356**, 29 (2005).
- 22. M. Cruz, L. Cayon, E. Martinez-Gonzalez, et al., Astrophys. J. 655, 11 (2007), astro-ph/0603859.
- 23. L. Rudnick, S. Brown, and L. R. Williams, Astrophys. J. **671**, 40 (2007), arXiv:0704.0908.
- 24. R. K. Sachs and A. M. Wolfe, Astrophys. J. **147**, 73 (1967).
- 25. M. Cruz, N. Turok, P. Vielva, et al., Science **318**, 1612 (2007), arXiv:0710.5737.
- M. Cruz, E. Martinez-Gonzalez, P. Vielva, et al., Monthly Notices Roy. Astronom. Soc. **390**, 913 (2008), arXiv:0804.2904.
- 27. T. Jaffe, A. J. Banday, H. K. Eriksen, et al., Astrophys. J. 629, L1 (2005), astro-ph/0503213.

- 28. P. D. Naselsky, P. R. Christensen, P. Coles, et al., Astrophysical Bulletin **65**, 101 (2010).
- 29. J. J. Condon, W. D. Cotton, E. W. Greisen, et al., Astronom. J. 115, 1693 (1998).
- 30. K. M. Smith and D. Huterer, (2008), arXiv:0805.2751
- 31. D. I. Soloviov and O. V. Verkhodanov, Astrophysical Bulletin **65**, 121 (2010).
- O. V. Verkhodanov, A. G. Doroshkevich, P. D. Naselsky, et al., Bull. Spec. Astrophys. Obs. 58, 40 (2005).
- 33. O. V. Verkhodanov and V. L. Gorokhov, Bull. Spec. Astrophys. Obs. **39**, 155 (1996).
- 34. P. A. R. Ade, N. Aghanim, M. Arnaud, et al., Astronom. and Astrophys. submitted (2011), arXiv:1101.2041
- O. V. Verkhodanov and M. L. Khabibullina, Astrophysical Bulletin 66, 183 (2011), arXiv:1108.4377
- A. G. Doroshkevich and O. V. Verkhodanov, Phys. Rev. D, 83, 043002 (2011), arXiv:1008.4094
- K. Górski, E. Hivon, A. J. Banday, et al., Astrophys. J. 622, 759 (2005).
- A. G. Doroshkevich, P. D. Naselsky, O. V. Verkhodanov, et al., Int. J. Mod. Phys. D 14, 275 (2003), astro-ph/0305537.
- A. G. Doroshkevich, O. B. Verkhodanov, O. P. Naselsky, et al., Int. J. Mod. Phys. D 20, 1053 (2011), arXiv:0904.2517.

NON-GAUSSIANITY OF PEAK STATISTICS IN CONTRASTING SPOTS OF WMAP ILC

O.V. Verkhodanov, A.A. Basova

We study the statistics of isolated maxima and minima in the regions of three contrasting spots in the WMAP7 ILC data. A non-Gaussianity of signal distribution is detected in these regions. We demonstrate that non-Gaussian properties are related to the appearance of low harmonics ($\ell \leq 20$). Possible reasons of this non-Gaussianity are discussed.

Key words: cosmology: cosmic background radiation surveys

444