УДК 524.74-355/77

СПЕКТРЫ И ПЕРЕМЕННОСТЬ ВЫБОРКИ ПОЛЯРНЫХ ИСТОЧНИКОВ

© 2013 А. Г. Горшков¹, В. К. Конникова¹, М. Г. Мингалиев^{2,3}, А. К. Эркенов²

¹Государственный астрономический институт им. П. К. Штернберга Московского государственного университета им. М. В. Ломоносова, Москва, 119991 Россия

²Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия

³ Казанский (Приволжский) федеральный университет, Казань, 420008 Россия Поступила в редакцию 16 мая года; принята в печать 15 августа 2013 года

Представлены результаты 154 ежедневных наблюдений 33 источников в области склонений 70°-84°.5 (J 2000) в 2009 г. У четырех объектов обнаружена переменность с характерными временами от 8 до 35 дней с индексами модуляции 2.1–5.6%. Получены спектры переменных компонент. Наблюдения этих же источников повторены через шесть месяцев, в 2010 г., длительностью до 55 дней. У трети источников плотность потока на 11.1 ГГц изменилась между сериями более чем на 10%.

Ключевые слова: галактики: активные — радиоконтинуум: галактики

1. ВВЕДЕНИЕ

Переменность внегалактических источников на разных масштабах времени в диапазонах от гамма до радио активно исследуется многими авторами. Характерные времена переменности для разных источников составляют от нескольких минут до нескольких лет.

Наименее исследованная область характерных времен — от нескольких дней до нескольких недель (мы называем ее недельной переменностью), так как для ее обнаружения и получения параметров необходимы ежедневные наблюдения в течение нескольких месяцев. С 1998 г. мы активно занимались этой проблемой: проведено восемь сессий длительных ежедневных наблюдений на РАТАН-600 двух полных по плотности потока выборок в областях склонений 4°-6° (В 1950) и 10°-12°30' (J 2000). Наблюдались полные выборки из 69 и 83 источников с плоскими спектрами $(\alpha \geq -0.5, S_{\nu} \sim \nu^{\alpha})$ одновременно на шести частотах в диапазоне 1-21.7 ГГц. В результате этих наблюдений у 30 источников обнаружена переменность с уровнем значимости, не превышающим 1%. На основе анализа кривых блеска, структурных и автокорреляционных функций получены характерные времена переменности, индексы модуляции и спектры переменных компонент. Для ряда источников разделены процессы переменности, вызванные внутренними причинами в самом источнике, и внешними — мерцаниями на турбулентной межзвездной среде (ISS) [1, 2].

В 2009 и 2010 гг. проведены сессии ежедневных наблюдений 33 источников с плоскими спектрами со склонениями от 70°до 84°.5 для поиска переменности на масштабах от нескольких дней до нескольких недель. Выборка случайная, большинство источников с плоскими спектрами взяты из каталога JVAS [3] на 8.4 ГГц, в основном, с плотностями потоков больше 200 мЯн. Цель работы — поиск источников с недельной переменностью, а также источников, плотности потоков которых заметно изменились за шесть месяцев между сессиями 2009 и 2010 гг. В работе представлены результаты этих наблюдений.

2. НАБЛЮДЕНИЯ И ОБРАБОТКА РЕЗУЛЬТАТОВ

Наблюдения полярных источников проводились на Южном секторе РАТАН-600 ежедневно с 15 мая по 15 октября 2009 г. (154 дня) одновременно на частотах 2.3, 4.85, 7.7, 11.1 и 21.7 ГГц и с 5 марта по 30 апреля 2010 г. на тех же частотах, кроме 2.3 ГГц, которая была исключена из-за техногенных помех.

Для учета изменения эффективной площади антенны с высотой источника в указанном диапазоне склонений наблюдались десять опорных источников. Основной калибровочный источник — J 0410+7656, его плотности потока на 2.3, 4.85, 7.7, 11.1 и 21.7 ГГц приняты соответственно 4.36, 2.83, 2.16, 1.75 и 1.19 Ян. На Рис. 1 приведены спектры опорных источников. Черными кружками показаны

Рис. 1. Спектры опорных источников. Черные кружки — плотности потоков, принятые на исследуемых частотах, светлые квадраты — плотности потоков на частотах 0.325 или 0.352 ГГц из обзора WENSS [4], на 1.4 ГГц из обзора NVSS [5], на 8.4 ГГц из JVAS [3] и на частотах 2.7 и 10.7 ГГц из каталога Кюра [6].

плотности потоков, принятые на исследуемых частотах, светлыми квадратами — плотности потоков на частотах 0.325 или 0.352 из обзора WENSS [4], на 1.4 ГГц — из обзора NVSS [5], на 8.4 ГГц — из обзора JVAS [3], и на частотах 2.7 и 10.7 ГГц — из каталога Кюра [6].

Для обработки наблюдений использовался пакет программ, позволяющий получать как плотность потока индивидуального наблюдения источника, так и среднюю плотность потока за любой временной интервал внутри сессии наблюдений. В основу обработки положена оптимальная фильтрация исходных данных, подробно методика описана в работе [7].

3. ПОИСК ПЕРЕМЕННОСТИ И ОПРЕДЕЛЕНИЕ ЕЕ ПАРАМЕТРОВ

Подробно методика поиска переменности описана в работе [1]. Методика использовалась нами для поиска переменности на масштабах времени больше суток для двух выборок в областях склонений 4°-6° (В 1950) и 10°-12°30′ (J 2000) [1,2].

Определим кратко основные этапы работы.

Вначале проводилась фильтрация измеренных плотностей потоков, испорченных всякого рода помехами (погодными условиями или техногенными причинами), с использованием критерия Фишера.

Затем была убрана долговременная переменность с характерными временами больше длительности наблюдений, которая аппроксимировалась параболически или линейно.

На всех частотах определялась как ежедневная, так и средняя плотность потока источника в течение сессии наблюдений.

Характерные времена переменности грубо оценивались по виду структурных функций первого порядка (SF)

$$D^{1}(\tau) = \left\langle (f(t) - f(t+\tau))^{2} \right\rangle,$$

где *т* — временной сдвиг.

Если в процессе присутствует нешумовая компонента, то выше уровня аппаратурных шумов структурная функция в логарифмическом масштабе растет по степенному закону, пока не достигает уровня насыщения, характеризующего суммарную дисперсию процесса. Пересечение степенной части с уровнем насыщения дает характерное время τ_{sf} .

Структурные функции также использовались для определения дисперсии переменной составляющей:

$$\sigma_{\rm var}^2 = \sigma_{\rm pr}^2 - \sigma_n^2,$$

где $\sigma_{\rm pr}^2 = \sum_{i=1}^n (S_i - \langle S \rangle)^2 / (n-1)$ — дисперсия процесса; $\langle S \rangle$ — средняя плотность потока за всю

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 68 № 4 2013

сессию наблюдений; $\sigma_n^2 = D^1(1)/2$ — дисперсия шумовой составляющей; $D^1(1)$ — значение SF при сдвиге на одни сутки.

Величину переменной составляющей мы характеризуем индексом модуляции, который определен как $m = 100 \sigma_{\rm var}/\langle S \rangle$.

Мы также рассчитали автокорреляционные (ACF) функции и по ним определили более точно характерные времена переменности τ_{acf} .

Идея определения характерного времени заключается в следующем. Если переменность есть результат n циклических или гармонических процессов в источнике, то в ACF будет присутствовать функция

$$\sum_{i=1}^n A_i \cos(3.14\,\tau)/\tau_{\mathrm{acf}\,i},$$

где A_i — коэффициент корреляции *i*-ой переменной составляющей при нулевом сдвиге. Оптимизируя эту функцию по 2n параметрам, можно получить A_i и $\tau_{acf i}$ переменных составляющих.

По виду ACF можно определить не только характерное время, но и характеристики переменности, в частности, является ли процесс периодическим, представляет собой одну или несколько хаотических вспышек или может быть комбинацией этих процессов.

Затем рассчитывалось значение нормированной величины χ^2 для числа степеней свободы n-1, где n — число наблюдений в течение сессии.

$$\chi^{2} = (n-1)^{-1} \sum_{i=1}^{n} ((S_{i} - \langle S \rangle) / \Delta S_{i})^{2},$$

где S_i и ΔS_i — средняя плотность потока и ее ошибка в *i*-й день наблюдательной сессии; $\langle S \rangle$ — средняя плотность потока за сессию.

При обнаружении процессов с разными характерными временами уровень значимости процесса с максимальной амплитудой не должен превышать 1%. Уровень значимости остальных процессов в этом случае может быть больше. Переменность источника считалась обнаруженной, если величина χ^2 не превышала величину для уровня значимости 1% на двух и более частотах.

Недельная переменность может определяться одним или несколькими процессами с разными характерными временами и частотными спектрами. Типы возможной быстрой переменности — периодическая, циклическая, однополярные или двуполярные импульсы — описаны в работе [1]. В одном источнике на разных частотах может наблюдаться переменность разных типов с разными характерными временами τ_{acf} . Эти характеристики могут меняться со временем. Кроме того, переменность

может в некоторые годы присутствовать, а в другие полностью отсутствовать.

4. РЕЗУЛЬТАТЫ

Список исследуемых источников с плоскими спектрами приведен в Таблице 1: колонка (1) экваториальные координаты источников на эпоху J 2000 из каталогов JVAS или NVSS, колонка (2) — оптическое отождествление (Q — квазар, L — объект типа BL Lac, G — галактика, EF объект слабее 21^m), колонки (3), (4) — красное смещение и звездная величина В источника, взятые нами из каталога квазаров и активных галактик [8]. В колонках (5)–(9) приведены средние за сессию наблюдений 2009 г. плотности потоков и их среднеквадратичные ошибки на пяти частотах. Если плотность потока с 2009 по 2010 гг. на какихлибо частотах изменилась больше чем на 10%, приведены также плотности потоков, полученные в 2010 г.

Выборка содержит шестнадцать квазаров с красными смещениями от z = 0.322 до z = 3.387, пять объектов типа BL Lac, две активные галактики и десять объектов слабее 21^{m} .

Переменность с характерными временами от 8 до 35 дней, удовлетворяющая принятым критериям, обнаружена у четырех источников исследуемой выборки. Это источники J 0721+7120, J 1058+8114, J 1800+7828 и J 2005+7752.

4.1. J0721+7120 (S50716+714)

Хорошо известный блазар, относительная амплитуда переменности которого является одной из самых больших среди всего класса активных ядер галактик (АЯГ). Переменность обнаруживается во всех диапазонах, от радио до гамма. В рентгеновском диапазоне отмечена переменность на масштабах 500–600 с [9], в оптическом диапазоне минимальная временная шкала 15 мин обнаружена в работе [10]. Кроме того, в радио и оптическом диапазонах у этого источника наблюдается сильная переменность степени поляризации на тех же временны́х масштабах. В радиодиапазоне переменность обнаружена на всех временны́х масштабах: десятки минут [11], дни [12], годы [13].

Таблица 1. Плотности потоков радиоисточников в наблюдениях 2009-2010 гг.

RA+Dec	Id	~	В	Flux density, mJy				
J 2000.0	Iu	~	D	2.3 GHz	3.9 GHz	7.7 GHz	11.1 GHz	21.7 GHz
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
001708.47+813508.14	Q	3.387	16.5	$898\pm~7$	1360 ± 9	1378 ± 10	$1317\pm~7$	893 ± 15
015734.97+744443.25	Q	2.341	16.5	1650 ± 13	$946\pm~4$	543 ± 3	302 ± 3	80 ± 10
	Q			1650 ± 19	970 ± 6	604 ± 6	394 ± 4	160 ± 20
021730.82+734932.62	Q	2.367	20.0	3053 ± 19	4200 ± 18	4813 ± 28	4752 ± 29	4550 ± 48
025752.57+784347.05	EF			315 ± 5	248 ± 2	233 ± 3	230 ± 3	$220\pm~7$
050842.36+843204.54	Q	1.340	16.5	197 ± 11	$217\pm~2$	229 ± 2	235 ± 3	$238\pm~6$
054338.84+823828.74	EF			245 ± 4	$203\pm~2$	$179\pm\ 2$	162 ± 2	134 ± 5
061024.28+780136.17	EF			86 ± 5	$106\pm~1$	134 ± 2	$148\pm~2$	$149\pm~4$
063921.96+732458.05	Q	1.854	18.1	711 ± 6	661 ± 3	790 ± 5	$885\pm~6$	1226 ± 12
				781 ± 11	$716\pm~4$	868 ± 6	$1043\pm~7$	1669 ± 16
072153.45+712036.36	L		15.5	853 ± 8	905 ± 4	920 ± 4	$1080\pm~7$	1671 ± 15
				1093 ± 13	1368 ± 9	1451 ± 13	2069 ± 16	3720 ± 30
075058.05+824158.50	Q	1.991	18.3	1423 ± 9	900 ± 5	710 ± 5	$615\pm~4$	$506\pm~6$
084124.36+705342.17	Q	2.218	17.3	2696 ± 15	1863 ± 9	1419 ± 9	1450 ± 8	2452 ± 22
				2779 ± 16	1820 ± 20	1529 ± 10	1730 ± 10	3045 ± 27

RA+Dec	Id	~	B	Flux density, mJy				
J 2000.0	Iu	~	D	2.3 GHz	3.9 GHz	7.7 GHz	11.1 GHz	21.7 GHz
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
090959.19+832756.50	EF			260 ± 8	158 ± 2	143 ± 2	138 ± 3	124 ± 6
101015.82+825014.80	Q	0.322	18.3	490 ± 5	457 ± 3	469 ± 4	478 ± 3	491 ± 6
105811.54+811432.66	Q	0.706	20.0	554 ± 7	696 ± 5	872 ± 6	1026 ± 9	1295 ± 9
				691 ± 10	822 ± 7	972 ± 8	1057 ± 10	1277 ± 16
115312.50+805829.15	Q	1.250	19.4	1990 ± 14	1655 ± 10	1473 ± 10	1351 ± 13	1149 ± 9
				1985 ± 17	1567 ± 17	1339 ± 14	1195 ± 7	1014 ± 16
122340.50+804004.32	G		19.0	$730\pm~7$	588 ± 4	630 ± 4	655 ± 6	660 ± 8
124345.03+744237.13	Q	0.782	19.3	$250\pm~7$	210 ± 5	$206\pm~6$	225 ± 9	317 ± 9
130500.02+785435.76	EF			258 ± 5	207 ± 2	$195\pm~2$	185 ± 2	180 ± 9
132351.38+794251.30	Q	1.970	21.5	603 ± 6	630 ± 4	666 ± 3	660 ± 4	607 ± 9
135755.37+764321.05	EF			499 ± 6	487 ± 2	520 ± 3	550 ± 3	488 ± 6
				533 ± 15	$539\pm~7$	$610\pm~8$	$618\pm~6$	522 ± 6
144828.78+760111.59	G	0.899	22.3	292 ± 9	436 ± 2	609 ± 3	696 ± 4	$798\pm~9$
				302 ± 12	500 ± 4	731 ± 5	$849\pm~7$	820 ± 11
152102.80+785830.28	EF	usno		125 ± 6	$165\pm~2$	189 ± 3	189 ± 4	$170\pm~7$
154956.54+701255.00	EF			516 ± 6	385 ± 2	303 ± 4	264 ± 3	214 ± 9
172359.44+765311.55	Q	0.680	18.6	220 ± 8	$330\pm~2$	382 ± 3	441 ± 2	495 ± 5
180045.68+782804.02	Q	0.680	15.9	2050 ± 13	2055 ± 14	2349 ± 22	2580 ± 25	2573 ± 23
				2006 ± 23	2312 ± 23	2704 ± 24	2826 ± 32	2868 ± 26
182203.06+825720.68	EF			283 ± 11	240 ± 3	229 ± 4	$218\pm~3$	185 ± 12
192748.49+735801.57	Q	0.303	16.1	3492 ± 20	3300 ± 15	3689 ± 21	4207 ± 19	6719 ± 62
200531.00+775243.25	L	0.342	16.7	986 ± 10	$1057\pm~9$	1238 ± 15	1337 ± 15	1300 ± 22
				1177 ± 17	1330 ± 10	1464 ± 15	1475 ± 9	1355 ± 22
202235.58+761126.18	L		18.1	545 ± 6	544 ± 3	630 ± 3	655 ± 4	705 ± 9
				553 ± 8	$611\pm~4$	746 ± 5	807 ± 5	861 ± 14
				± 6	$797\pm~8$	960 ± 8	1025 ± 12	1100 ± 35
205133.74+744140.50	L		20.4	262 ± 9	$209\pm~2$	237 ± 3	280 ± 3	347 ± 8
220033.12+805859.13	EF			$105\pm~7$	166 ± 2	$218\pm~2$	214 ± 2	$160\pm~7$
223638.60+732252.66	Q	1.345	19.9	$301\pm~7$	$270\pm~2$	255 ± 3	245 ± 3	236 ± 9
235622.79+815252.27	Q	1.344	20.3	428 ± 11	572 ± 4	684 ± 6	745 ± 6	816 ± 10
				530 ± 10	668 ± 5	762 ± 6	$784\pm~7$	861 ± 11

Таблица 1. (Продолжение)

Подробное исследование недельной переменности данного источника на РАТАН-600 в 2009 и 2010 гг. приведено в наших работах [14, 15], здесь мы приведем только основные результаты.

В наблюдениях 2009 г. обнаружена переменность на частотах 11.1, 7.7 и 4.85 ГГц со средним характерным временем 15 суток и индексами модуляции на этих частотах 5.2%, 5.7% и 5.7%. На Рис. 2а–2с приведены структурные и автокорреляционные функции источника на этих частотах в 2009 г. Переменность имеет характер антивспышек, или затмений, когда происходит довольно быстрое уменьшение плотности потока и по достижении минимума возвращение к прежнему уровню с характерным временем, близким ко времени спада. За время наблюдений обнаружено три таких затмения (Рис. 2е).

Средний по всем антивспышкам спектр переменной составляющей σ_{var} растет в сторону высоких частот и характеризуется индексом $\alpha = +0.32$.

Запаздывание между частотами 7.7—4.85 ГГц, определенное по кросс-корреляционным функциям, составляет два дня, между частотами 11.1—4.85 ГГц — три дня. Явление на более низкой частоте всегда развивается позже.

На Рис. 2f показан интегральный спектр в минимумах и максимумах кривой блеска. В антивспышках максимум в спектре быстро смещается в низкочастотную область.

По данным низкочастотных обзоров 6С на 151 ГГц [16], WENSS на 0.325 ГГц и NVSS на 1.4 ГГц в спектре присутствует постоянная составляющая с индексом $\alpha \leq -0.55$.

Согласно данным, полученным в радиообсерватории Мичиганского университета (США) на частотах 4.8, 8.0 и 14.5 ГГц [17], в 2009 г. мы наблюдали источник в начале долговременной вспышки.

В 2010 г. наблюдения проводились на восходящей ветви долговременной вспышки. Плотность потока на 21.7 ГГц увеличилась в 2.2 раза, интегральный спектр аппроксимировался прямой с $\alpha = +0.53$.

На Рис. 2f показан спектр источника в 2010 г. в минимальной фазе кривой блеска. Плотность потока на высоких частотах в этом году была близка к максимальной за 30 лет наблюдений радиообсерватории Мичиганского университета. Структурные функции и ACF в 2010 г. дают значимую переменность на частотах 21.7—4.85 ГГц. В отличие от 2009 г. переменность стала циклической, на частоте 21.7 ГГц характерное время вариаций $\tau_{acf} = 17$ дней с индексом модуляции m = 11%. На частотах 11.1 и 7.7 ГГц $\tau_{acf} = 21$ день, индекс модуляции m = 9% на обеих частотах. Кроме того, на этих частотах обнаруживается очень слабая переменная компонента (примерно в 15 раз меньшей амплитуды) с $\tau_{acf} = 9-10$ дней. На частоте 4.85 ГГц можно выделить два характерных времени $\tau_{acf} = 7$ дней и $\tau_{acf} = 17$ дней, индекс модуляции m = 6%. Переменность с бо́льшим τ_{acf} имеет в два раза бо́льшую амплитуду.

На Рис. 2d приведены структурная и автокорреляционная функция на 11.1 ГГц в 2010 г. Спектр переменной составляющей после вычитания долговременных трендов растет в сторону высоких частот с индексом $\alpha = +0.93$.

Задержка в развитии вспышки 2010 г. между частотами 21.7–7.7 ГГц — наибольшая из всех наблюдавшихся вспышек и составляет шесть дней. По величине задержки оценен лоренц-фактор $\gamma = 34-38$ и угол θ между лучом зрения и джетом, который составляет 2°.

В наблюдениях источника на 32-м телескопах ИПА РАН на частоте 4.85 ГГц в 2009 и 2010 гг. обнаружена переменность с характерным временем 10–12 часов, а в 2010 г. на 8.57 ГГц — 5–6 часов. Исследование внутрисуточной переменности источника подробно описано в работах [14, 15].

4.2. J 1058+8114 (B 1053+815)

Квазар с z = 0.706, который присутствует в обзорах WENSS, NVSS и JVAS.

Наблюдения VLBA в октябре 1995 г. на 2.32 и 8.55 ГГц выявили структуру, состоящую из одной неразрешенной компоненты [18]. В работе [19] сообщается о наличии рентгеновского излучения в источнике. Длительные измерения плотности потока не проводились, о существовании быстрой переменности плотности потока источника ранее не сообщалось.

В наших наблюдениях быстрая переменность на уровне значимости меньше 1% обнаружена на частотах 11.1, 7.7 и 2.3 ГГц. На Рис. За-Зс приведены структурные и автокорреляционные функции на этих частотах. На частоте 7.7 ГГц переменность циклическая (квазипериодическая) с характерными временами $au_{
m acf} = 12$ и 36 дней, на частотах 11.1 и 2.3 ГГц переменность проявляется несколькими импульсами (вспышками) со средним характерным временем $\tau_{\rm acf} = 17$ дней. Индексы модуляции на частотах 11.1, 7.7 и 2.3 ГГц равны 2.2, 2.9 и 4.7%. Спектр переменной составляющей понижается с увеличением частоты с индексом $\alpha = -0.45$ (Рис. 3d). Кросс-корреляционная функция между частотами 11.1-2.3 ГГц (Рис. Зе) не показывает запаздывания процесса переменности между этими частотами.

На Рис. 3f показан интегральный спектр источника в 2009 и 2010 гг. Он растет в сторону высоких частот и аппроксимируется степенными функциями

Рис. 2. Источник J 0721+7120: (a), (b), (c) структурные (слева) и автокорреляционные (справа) функции на частотах 11.1, 7.7 и 4.85 ГГц в 2009 г.; (d) структурная и автокорреляционная функции на 11.1 ГГц в 2010 г.; (e) кривая блеска в наблюдениях 2010 г. на частоте 11.1 ГГц; (f) интегральный спектр, черные кружки — спектр в минимумах и максимумах кривой блеска 2009 г., светлые кружки — спектр 2010 г., светлые квадраты — плотности потоков на частотах 151 ГГц [16], 0.325 ГГц [4] и 1.4 ГГц [5].

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 68 № 4 2013

Рис. 3. Источник J 1058+8114: (a), (b), (c) структурные (слева) и автокорреляционные (справа) функции на частотах 21.7, 11.1 и 7.7 ГГц в 2009 г.; (d) спектр стандарта переменной компоненты в 2009 г.; (e) кросс-корреляционная функция между частотами 11.1 и 7.7 ГГц; (f) интегральный спектр источника в наших наблюдениях 2009, 2010 гг. и спектр 2005 г. по данным работы [20]; (g) кривая блеска в наблюдениях 2009 г. на частоте 11.1 ГГц.

с индексом $\alpha = +0.40$ в 2009 г. и $\alpha = +0.28$ в 2010 г. Для сравнения здесь же приведен спектр, полученный на РАТАН-600 в 2005 г. [20]. Кривая блеска в течение наблюдательной сессии на 11.1 ГГц показана на Рис. Зд.

В 2010 г. источник наблюдался только 20 дней, что недостаточно для анализа недельной переменности.

4.3. J1800+7828 (S51803+784)

Блазар J 1800+7828 с z = 0.680 является источником сильного рентгеновского и гамма излучения. Переменность обнаружена во всех диапазонах. В радиодиапазоне найдена переменность с характерными временами от 1-2 дней [21] до нескольких лет. Длинные ряды наблюдений источника получены в радиообсерватории Мичиганского университета (США) на частотах 4.8, 8.0 и 14.5 ГГц в 1966–1999 и 1981–2010 гг. [22, 17]. Наблюдались хаотические вспышки с амплитудой 1-1.5 Ян на 14.5 ГГц. В обсерватории Метсахови (Финляндия) источник наблюдался на частотах 22 и 37 ГГц, изменения плотности потока на этих частотах достигали 1 Ян [23, 24]. Индекс долговременной переменности по этим данным на частотах 4.8-22 ГГц $(S_{\rm max} - S_{\rm min})/(S_{\rm max} + S_{\rm min}) \approx 0.2 - 0.3.$

В наших наблюдениях 2009 г. обнаружена переменность на частотах 21.7, 11.1 и 7.7 ГГц. На Рис. 4а–4с приведены структурные и автокорреляционные функции источника. Вид структурных функций и АСГ предполагает наличие циклической переменности на этих частотах с характерным временем вариаций $\tau_{acf} = 35$ дней и с индексами модуляции m = 6.5%, m = 3.2% и m = 2.1% соответственно. Кроме того, на 21.7 и 11.1 ГГц обнаруживается слабая переменная компонента (примерно в 5–7 раз меньшей амплитуды) с $\tau_{acf} \approx 11$ дней. Переменность существует и на 4.85 ГГц, но уровень значимости выше принятых нами критериев.

На Рис. 4d показана кривая блеска на 11.1 ГГц во время наблюдений после вычитания долговременной кривой блеска. Кросс-корреляционные функции между частотами 21.7—11.1 и 11.1—7.7 ГГц показывают временные задержки развития процесса переменности между частотами. На частоте 11.1 ГГц максимум вариаций запаздывает на три дня по сравнению с частотой 21.7 ГГц, на частоте 7.7 ГГц процесс развивается позже на четыре дня по сравнению с частотой 11.1 ГГц. На Рис. 4е приведена кросс-корреляционная функция между частотами 11.1—7.7 ГГц.

На Рис. 4f приведен спектр стандарта переменной составляющей $\sigma_{\rm var}^2$ источника. Плотность потока растет с увеличением частоты, спектр

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 68 № 4 2013

хорошо аппроксимируется степенной функцией $\sigma_{\rm var}=3.8\,\nu^{+1.27}.$

Вид интегрального спектра значительно меняется в зависимости от фазы активности. На Рис. 4g мы привели спектры в максимальной фазе активности 22 августа 2009 г., после прохождения максимума 16 сентября 2009 г. и в конце сессии 9 октября 2009 г., когда плотность потока была близка к минимальной. В диапазоне 4.85-21.7 ГГц спектры хорошо аппроксимируются параболами. В максимальной фазе активности максимум в спектре находится значительно выше исследуемого диапазона. По мере уменьшения плотности потока максимум смещается в низкочастотную область и в конце наблюдений находится на частоте 20 ГГц. На этом же рисунке показаны плотности потоков на частоте 0.352 ГГц и 1.4 ГГц из обзоров WENSS [4] и NVSS [5].

В наблюдениях 2010 г. мы не обнаружили переменности, т.к. число наблюдений было недостаточно для анализа. Интегральный спектр 2010 г. хорошо аппроксимируется параболой с максимумом примерно на 20 ГГц, средняя плотность потока в 2010 г. увеличилась в 1.1–1.15 раз.

Наиболее вероятная модель обнаруженной переменности — распространение ударной волны в джете радиоисточника [25, 26]. Для этой модели типична временная шкала переменности от нескольких недель до нескольких месяцев, а также запаздывание максимума спектра при прохождении ударной волны через оптически толстую часть джета. Кроме того, на этот механизм указывает растущий спектр переменной компоненты, динамика изменения интегрального спектра — смещение максимума в низкочастотную область после прохождения максимума плотности потока.

В этом случае видимые линейные размеры излучающей области $R \approx c \tau_{\rm acf} \approx 6000$ а.е., угловые — 4.8 μ as, яркостная температура $(2.3-4.8) \times 10^{14}$ К, доплер-фактор D = 6-7.8 на частотах 21.7-7.7 ГГц. Обнаруженная задержка максимумов плотности потока между частотами 21.7-11.1 и 11.1-7.7 ГГц соответственно в три и четыре дня позволяет оценить лоренц-фактор $\gamma = 39-43$. Это подтверждает, что источник является классическим блазаром.

Более подробно свойства переменности источника в 2009 г. описаны в нашей работе [27].

4.4. J 2005+7752 (S5 2007+77)

Исследования источника лацертида с z = 0.342в инфракрасном, радио и оптическом диапазонах проводились в работе [28]. Найдены вариации на временно́й шкале от нескольких дней. Источник

Рис. 4. Источник J 1800+7828: (a), (b), (c) — структурные (слева) и автокорреляционные (справа) функции на частотах 11.1, 7.7 и 4.85 ГГц в 2009 г.; (d) кривая блеска в наблюдениях 2009 г. на частоте 11.1 ГГц; (e) кросс-корреляционная функция между частотами 11.1 и 7.7 ГГц; (f) спектр стандарта переменной компоненты в 2009 г.; (g) интегральный спектр в максимальной фазе активности, после прохождения максимума и в минимальной фазе активности (темные кружки), плотности потоков на частотах 0.352 и 1.4 ГГц (светлые кружки) — из обзоров [4, 5].

Рис. 5. Источник J 2005+7752: (а), (b) структурные (слева) и автокорреляционные (справа) функции на частотах 11.1 и 4.85 ГГц в 2009 г.; (c) кривая блеска в наблюдениях 2009 г. на частоте 4.85 ГГц, прямая линия — долговременная переменность в течение наблюдательного сета; (d) интегральный спектр в начале и в конце сета (темные кружки) и в 2010 г. (светлые кружки).

излучает в рентгеновском [29] и гамма диапазонах [30]. Долговременный мониторинг объекта в радиодиапазоне проводился в радиообсерватории Мичиганского университета (США) на частотах 4.8, 8.0 и 14.5 ГГц. В обсерватории Метсахови (Финляндия) источник наблюдается на частотах 22 и 37 ГГц. VSOP наблюдения источника в 1997 г. на 5 ГГц обнаружили мультикомпонентную структуру ядро-джет [31].

На РАТАН-600 исследование быстрой переменности радиоисточника J 2005+77 проводилось в августе 2007 г. в течение 30 дней. В работе [32] сообщается об обнаружении переменности в течение наблюдений на частотах 4.8, 7.7 и 11.2 ГГц.

Быстрые изменения поляризации, корреляция между инфракрасным и радиоизлучением и другие факторы предполагают внутреннюю причину переменности радиоисточника [28]. В данной работе при ежедневных наблюдениях в течение 145 дней переменность, удовлетворяющая принятым критериям, обнаружена на частотах 11.1 и 4.85 ГГц. Структурные и автокорреляционные функции на этих частотах показаны на Рис. 5а, 5b. На 11.1 ГГц наблюдается циклическая переменность с характерными временами $\tau_{acf} = 20, 40$ дней, причем амплитуда переменности с меньшим характерным временем в 2.2 раза меньше.

На 4.85 ГГц переменность также циклическая с характерными временами $\tau_{acf} = 8, 20$ дней. Индексы модуляции на 11.1 и 4.85 ГГц одинаковые, m = 3.5%. Спектральный индекс переменной составляющей между частотами 4.85 и 11.1 ГГц $\alpha_{var} = +0.27$.

На Рис. 5с приведена кривая блеска на 11.1 ГГц после вычитания линейного тренда, связанного с долговременной переменностью. Прямая линия

Рис. 6. Спектры источников выборки в 2009 г. (темные кружки), некоторых источников в 2010 г. (светлые кружки) и в 2005 г. (темные треугольники).

Frequency, GHz

Рис. 6. (Продолжение)

435

показывает тренд долговременной переменности. Значительный рост плотности потока с частотой долговременной переменности показывает, что наблюдения проходили на растущей части вспышки.

На Рис. 5d приведен интегральный спектр источника в начале и в конце наблюдений, 16 мая 2009 г. и 13 октября 2009 г. Оба спектра аппроксимируются растущими прямыми с индексами $\alpha_{\rm beg} = +0.08$ и $\alpha_{\rm end} = +0.29$. К 2010 г. максимум вспышки, по-видимому, был пройден; максимум в интегральном спектре сдвинулся в низкочастотную область и находился примерно на 15 ГГц.

4.5. Спектры остальных источников

Спектры остальных источников, наблюдавшихся в 2009 г., приведены на Рис. 6. Если плотность потока за полгода, прошедших между сессиями 2009 и 2010 гг., на какой-либо частоте изменилась больше, чем на 10%, приведены оба спектра. Для нескольких источников показаны спектры, полученные в 2005 г. по данным работы [20].

Спектры двенадцати источников близки к плоским, степенные или уплощающиеся к высоким частотам с индексами α от 0 до -0.45. Среди этих источников шесть EF (J0257+7842, J0543+8238, J 0909+8327. J 1305+7854, J 1549+7012 И J1822+8257), одна галактика (J1223+8040), четыре квазара с z = 0.322 - 1.991 со средним значением $\overline{z}_{\rm Q} = 1.22 \pm 0.68$ (J 0750+8241, J 1010+8250, J1153+8058 и J2236+7322), один объект типа BL Lac (J0508+8432). Плотности потоков одиннадцати источников не изменились между наблюдениями 2009 и 2010 гг. Только у источника J1153+8058, отождествленного с квазаром с z = 1.25, плотность потока изменилась между сериями, в основном, на высоких частотах. Спектр этого источника в 2005 г. [20] — растущий с $\alpha = 0.08.$

Привлечение данных 2005 г. показало, что плотность потока большинства источников со спектром, понижающимся в сторону высоких частот, со временем меняется синхронно, поэтому вид спектра остается неизменным, как это видно на примерах источников J 0543+8238, J 1010+8250, J 0257+7843.

В работе по исследованию переменности полной выборки радиоисточников в течение 20 лет [33] мы отмечали, что источники с такими спектрами имеют слабую переменность. Значительную часть плотности потока в спектре дает протяженная или квазистационарная компонента. Поэтому переменность обнаруживается на высокочастотном конце спектра.

Спектры еще десяти источников в наших наблюдениях имеют максимум в исследуемом

диапазоне; это, в основном, GPS-источники. Из них четыре источника отождествлены с квазарами с красными смещениями 1.97–3.387 со средним значением $\overline{z} = 2.52 \pm 0.61$ (J 0017+8135, J 0157+7444, J 0217+7349, J 1323+7942), один с галактикой (J 1448+7601), один — с объектом типа BL Lac (J 2022+7611), четыре источника относятся к EF (J 0610+7801, J 1357+7643, J 1521+7858 и J 1521+7858). Плотность потока четырех источников J 0157+7442, J 1357+7643, J 1448+7601 и J 2022+7611 (Q, EF, G и L) изменилась между двумя сессиями. Их спектр смещается при неизменном виде.

В работе [32] сообщалось о переменности источника J 2022+7611 на частотах 4.85, 7.7 и 11.1 ГГц в ежедневных наблюдениях 1—30 августа 2007 г.. В наших наблюдениях источник имел спектр с максимумом примерно на 20 ГГц, близкий к спектру 2007 г.. Переменности на масштабах от нескольких дней до нескольких недель в 2009 и 2010 гг. мы не обнаружили.

Остальные семь источников в диапазоне 4.85-21.7 ГГц имеют растущие с увеличением частоты спектры, максимумы в спектрах находятся выше исследуемого диапазона. Шесть источников квазарами z = 0.303 - 2.218, отождествлены С $\overline{z} = 1.2 \pm 0.74$ (J0639+7324, J0841+7053, J 1243+7442. J 1723+7653. J 1927+7358. J 2356+8152), и один объект — типа BL Lac (J 2051+7441). Все объекты в оптическом диапазоне ярче 21^m. В спектрах источников Ј 0639+7324, J 0841+7053, J 1927+7358 и J 2051+7441 значительную плотность потока дает протяженная компонента, на частотах выше 4.85-7.7 ГГц плотность потока растет с индексами $\alpha = 0.45 - 0.8$. Плотность потока четырех источников изменилась за полгода между сессиями. Для квазара J 2356+8152 мы также построили спектры, полученные в октябре 2006 г. и в апреле 2007 г. [34]. Плотность потока этого источника меняется значительно за несколько месяцев.

Несмотря на то, что исследованная выборка не является полной, полученные результаты подтверждают выводы работ [1, 2] о том, что быструю переменность следует искать в основном среди источников с красными смещениями до z = 1-1.5.

5. ЗАКЛЮЧЕНИЕ

1) Для 33 полярных источников получены спектры в диапазоне 2.3–21.7 ГГц. Для источников, плотности потоков которых существенно изменились с 2009 по 2010 гг., приведены спектры, полученные в обеих сессиях.

2) В четырех источниках исследуемой выборки обнаружена переменность на масштабах времени от 5 до 35 дней, из них три (J 0721+7120,

J 1800+7828 и J 2005+7752) — известные блазары, переменность которых возникает в самом источнике. Переменность обнаруживается на трех частотах. Спектры переменных составляющих этих источников растут в сторону высоких частот с индексами $\alpha = 0.32-1.27$. Для источников J 0721+7120 и J 1800+7828 получен лоренцфактор $\gamma = 34-43$ и угол между лучом зрения и джетом $\theta \approx 2^{\circ}$. Переменность источника J 1058+8114 (Q) ранее практически не исследовалась.

 Спектры остальных 29 источников можно разделить на три основные группы.

а) Спектры двенадцати источников близки к плоским, степенные или уплощающиеся к высоким частотам с индексами α от 0 до -0.45. Среди этих источников шесть EF, одна галактика, четыре квазара с красным смещением в диапазоне z = 0.322 - 1.991 со средним значением $\overline{z} = 1.22 \pm 0.68$, один объект типа BL Lac, плотность потока между сериями изменилась только у источника J 1153+8058 (Q).

b) Спектры десяти источников в наших наблюдениях имеют максимум в исследуемом диапазоне. Четыре источника отождествлены с квазарами с красными смещениями в диапазоне z = 1.97 - 3.387 со средним значением $\overline{z} = 2.52 \pm 0.61$, одной галактикой, одним объектом типа BL Lac и четырьмя EF. Плотность потока четырех источников — J 0157+7442 (Q), J 1357+7643 (EF), J 1448+7601 (G) И J 2022+7611 (L) — изменилась между двумя сессиями. Их спектр смещается при неизменном виде.

с) У остальных семи источников в диапазоне 4.85–21.7 ГГц плотность потока растет с увеличением частоты, максимумы в их спектрах находятся выше исследуемого диапазона. Шесть источников отождествлены с квазарами с красным смещением в диапазоне z = 0.303-2.218, $\overline{z} = 1.2 \pm 0.74$, один источник отождествлен с объектом типа BL Lac. Плотность потока четырех источников изменилась за полгода между сессиями.

БЛАГОДАРНОСТИ

Наблюдения на РАТАН-600 были проведены при финансовой поддержке Министерства образования и науки Российской Федерации (госконтракт 14.518.11.7054).

СПИСОК ЛИТЕРАТУРЫ

 A. G. Gorshkov, V.K.Konnikova, and M. G. Mingaliev, Astronomy Reports 54, 908 (2010).

- A. G. Gorshkov, V.K.Konnikova, and M. G. Mingaliev, Astronomy Reports 56, 345 (2013).
- I. W. A. Browne, Monthly Notices Roy. Astronom. Soc. 293, 257 (1998).
- 4. R. B. Rengelink, Y. Tang, A. G. de Bruyn, et al., Astronom. and Astrophys. Suppl. **124**, 259 (1997).
- 5. J. J. Condon, W. D. Cotton, E. W. Greisen, et al., Astronom. J. **115**, 1693 (1998).
- H. Kühr, A. Witzel, I. I. K. Pauliny-Toth, and U. Nauber, Astronom. and Astrophys. Suppl. 45, 367 (1981).
- А. Г. Горшков, О. И. Хромов, Астрофиз. исслед. (Изв. САО) 14, 15 (1981).
- 8. M. P. Veron-Cetty and P. Veron, Astronom. and Astrophys. **518**, 10 (2010).
- S. J. Wagner, A. Witzel, J. Heidt, et al., Astronom. J. 111, 2187 (1996).
- M. Sasada, M. Uemura, A. Arai, and Y. Furazawa, Publ. Astronom. Soc. Japan 60, 37 (2008).
- 11. A. C. Gupta, A. K. Srivastava, and P. J. Wuta, arXiv:0808.3630v1 (2008).
- 12. L. Furman, T. P. Krichbaum, A. Witzel, et al., Astronom. and Astrophys. **490**, 1019 (2008).
- 13. M. Villata, C. M. Raiteri, V. M. Larionov, et al., Astronom. and Astrophys. **481**, L79 (2008).
- 14. A. G. Gorshkov, A. V. Ipatov, V. K. Konnikova, et al., Astronomy Reports **55**, 97 (2011).
- 15. A. G. Gorshkov, A. V. Ipatov, V. K. Konnikova, et al., Astronomy Reports **55**, 1096 (2011).
- S. E. G. Hales, C. J. Mayer, P. J. Warner, and J. E. Baldwin, Monthly Notices Roy. Astronom. Soc. 251, 46 (1991.)
- 17. University of Michigan Radio Astronomy Observatory Database, http://www.astro.lsa. .umich.edu/obs/radiotel/umrao.php
- 18. A. L. Fey and P. Charlot, Astronom. and Astrophys. Suppl. **111**, 95 (1997).
- 19. S. Britzen, W. Brinkmann, R. M. Campbell, et al., Astronom. and Astrophys. **476**, 759 (2007).
- 20. M. G. Mingaliev, Yu. V. Sotnikova, N. N. Bursov, et al., Astronomy Reports **51**, 343 (2007).
- 21. D. S. Heeschen, Th. Krichbaum, C. J. Schalinski, and A. Witzel, Astronom. J. **94**, 1493 (1987).
- 22. M. F. Aller, G. E. Latimer, and P. E. Hodge, Astrophys. J. Suppl. **59**, 513 (1985).
- 23. H. Terasranta, M. Tornikoski, E. Valtaoja, et al., Astronom. and Astrophys. Suppl. **94**, 121, (1992).
- 24. H. Terasranta, J. Achren, M. Hanski, et al., Astronom. and Astrophys. **427**, 769 (2004).
- 25. R. D. Bladford and A. Königl, Astrophys. J. **232**, 34, (1979).
- 26. A. P. Marsher and W. K. Gear, Astrophys. J. **298**, 114, (1985).
- A. G. Gorshkov, V. K. Konnikova, M. G. Mingaliev, and A. K. Erkenov, Astronomy Reports 57, 338 (2013).
- 28. B. Peng, A. Kraus, T. P. Krichbaum, et al., Astronom. and Astrophys. **353**, 937 (2000).
- 29. H. L. Marshall, J. M. Gelbord, D. A. Schwartz, et al., Astrophys. J. Suppl. **193**, 15 (2011).

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 68 № 4 2013

- 30. S. E. Healey, R. W. Romani, G. Cotter, et al., Astrophys. J. Suppl. **175**, 97 (2008).
- 31. C. Jin, N. R. Krichbaum, A. Witzel, et al., Astrophys. and Space Sci. **278**, 97 (2001).
- 32. Yu. V. Sotnikova, M. G. Larionov, and M. G. Mingaliev, Astrophysical Bulletin **64**, 185 (2009).
- A. G. Gorshkov, V. K. Konnikova, and M. G. Mingaliev, Astronomy Reports 52, 314 (2008).
- M. G. Mingaliev, Yu. V. Sotnikova, N. S. Kardashev, and M. G. Larionov, Astronomy Reports 53, 487 (2009).

Spectra and Variability of a Sample of Polar Sources

A.G. Gorshkov, V. K. Konnikova, M. G. Mingaliev, A. K. Erkenov

The results of 154 daily observations of 33 sources in the declination interval $70^{\circ}-84^{\circ}5$ (J 2000), made in 2009, are reported. Four objects are found to exhibit variations with typical time scales ranging from 8 to 35 days and modulation indices 2.1–5.6%. The spectra of the variable components are obtained. The same sources were observed again after six months, in 2010, for a duration of up to 55 days. The 11.1 GHz flux densities of one third of the sources varied by more than 10% between the two data sets.

Keywords: *galaxies: active—radio continuum: galaxies*