УДК 524.338:520.82

ФОТОМЕТРИЧЕСКИЙ МОНИТОРИНГ КАНДИДАТОВ В ПОЛЯРЫ

© 2015 М. М. Габдеев^{*}

Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия Поступила в редакцию 26 июня 2015 года; принята в печать 18 сентября 2015 года

Представлены результаты фотометрических наблюдений двух кандидатов в поляры — IPHAS J052832.69+283837.6 и 1RXS J073346.0+261933. Оба объекта показывают переменность блеска с орбитальным периодом с амплитудой, близкой к 1^m, и на долговременной шкале времени с амплитудой, близкой к 0^m.5. У объекта IPHAS J052832.69+283837.6 также меняется форма кривой блеска и цвет. Долговременные наблюдения позволили определить орбитальный период первой системы и уточнить орбитальный период второй, они оказались равны $P_{\rm orb} = 0.4055592(4)$ и $P_{\rm orb} = 0.4139095(2)$ соответственно. Анализ фотометрических данных подтверждает, что данные системы могут быть полярами.

Ключевые слова: новые, катаклизмические переменные — звёзды: индивидуальные: IPHAS J052832.69+283837.6, 1RXS J073346.0+261933

1. ВВЕДЕНИЕ

Поляры (катаклизмические переменные типа AM Her) — это тесные короткопериодические двойные системы, состоящие из двух компонент: белого карлика и красного карлика К-М класса. В таких системах красный карлик заполняет свою полость Роша и теряет вещество через внутреннюю точку Лагранжа. В полярах белый карлик обладает сильным магнитным полем (более 10 МГс), и альвеновский радиус превышает размеры системы. Магнитное поле предотвращает формирование аккреционного диска, направляя аккрецирующее вещество по магнитным силовым линиям на ограниченные области поверхности белого карлика. Орбитальный период таких систем лежит в диапазоне от 80 минут до 8 часов с обусловленным эволюцией дефицитом в промежутке периодов от 2 до 3 часов [1]. Полярам свойственна долговременная переменность блеска (высокие и низкие состояния на временной шкале в месяцы и годы), амплитуда которой может достигать 3^m [2]. Внутриорбитальная переменность блеска варьируется как по амплитуде, так и по форме кривых блеска (см., например, [3]). Большое количество наблюдаемых особенностей описано в работах [4, 5].

Целью данной работы является классификация на основе анализа фотометрической переменности двух кандидатов в поляры: IPHAS J052832.69+283837.6 (далее IPHAS 0528) и 1RXS J073346.0+261933 (далее RXS 0733). Объект IPHAS 0528 взят из списка кандидатов в катаклизмические переменные, опубликованного в работе Уитама и др. [6]. Авторами были отобраны одиннадцать кандидатов с сильными линиями $H\alpha$. Для каждого из них получен спектр отождествления, а для трех объектов проведены более детальные наблюдения. Полученный спектр IPHAS 0528 показал высокое отношение интенсивностей линий He II λ 4686 Å к $H\beta$, что является одной из особенностей поляров [7].

Переменность объекта RXS 0733 была обнаружена Денисенко и др. [8] при выполнении оптического отождествления объектов рентгеновского обзора, выполненного спутником ROSAT. Авторы сообщают о значительной переменности объекта на большой шкале времени, необычных показателях цвета и высоком отношении интенсивности рентгеновского излучения к оптической. Были определены два возможных орбитальных периода системы: 0.41334(1) и 0.41395(1). Полученный на телескопе PTT-150 спектр RXS 0733 имел вид, характерный для катаклизмической переменной, а интенсивность линии H β . Авторы предположили, что данная система является поляром.

В разделе 2 настоящей работы описываются проведенные наблюдения и детали обработки, раздел 3 посвящен результатам мониторинга IPHAS 0528 и RXS 0733. Итоги подведены в заключительной части.

^{*}E-mail: crucifer.troll@gmail.com

Рис. 1. Изображения площадок IPHAS 0528 и RXS 0733, полученные на телескопе Цейсс-1000.

2. НАБЛЮДЕНИЯ И ОБРАБОТКА

Фотометрические наблюдения выполнялись на 1-м телескопе Цейсс-1000 САО РАН с 2012 по 2015 гг. Использовался штатный фотометр с набором широкополосных фильтров системы Джонсона—Казинса и ПЗС-приемником EEV 42-40 (2048×2048 пикселей размером 13.5×13.5 мкм) с азотным охлаждением. Наблюдения проводились в полосах B, V, R_c .

Журнал наблюдений представлен в таблице 1. На рис. 1 показаны поля исследуемых объектов с отмеченными на них опорными звездами.

Опорная звезда для объекта RXS 0733 и ее блеск взят из работы [8]. Для определения звездной величины опорной звезды на площадке объекта IPHAS 0528 были получены изображения стандарта S97 224 из каталога Ландольта [9]. Привязка вторичных стандартов выполнялась при отличных погодных условиях и близких значениях зенитного расстояния. Координаты и звездные величины опорных звезд представлены в таблице 2. После первичной обработки изображений, вычитания кадра нулевой экспозиции и деления на плоское поле звездные величины объектов определялись методом дифференциальной апертурной фотометрии с использованием пакета **DAOPHOT** среды IDL.

Полученные фотометрические временные ряды были использованы для определения периода объекта с помощью программы EFFECT В. П. Горанского,¹ в которой реализован метод Лафлера— Кинмана [10].

3. РЕЗУЛЬТАТЫ

3.1. IPHAS J052832.69+283837.6

Фотометрические наблюдения показали, что система является короткопериодической. Орбитальный период рассчитывался по всем наблюдениям в полосе R_c . Получена эфемерида

HJD =
$$2455951.192(\pm 0.001)$$

+ $0.055592(\pm 0.0000002) E$

где нулевая фаза соответствует моменту максимума блеска. Период системы составляет всего 80 минут, что находится на нижней границе периодов катаклизмических переменных.

Долговременная фотометрия показывает, что средний блеск системы меняется (рис. 2а-2с). Блеск системы в полосе R_c за три года уменьшился примерно на 0^m6. Сравнение кривых блеска 2012 и 2015 гг. в полосе R_c показано на рис. 3. В 2012 г. при более высоком состоянии максимум блеска приходится на фазы $\varphi = 0.8 - 1.2$. Перед началом фазы максимума находится провал величиной приблизительно 0^m. В фазах $\varphi = 0.2-0.8$ у объекта нет сильных изменений блеска. Орбитальная амплитуда переменности составляет примерно 1^m. В более низком состоянии кривая блеска имеет два максимума: главный — в фазе $\varphi = 0$, и вторичный — в фазе $\varphi = 0.6$. Орбитальная амплитуда переменности блеска возрастает приблизительно до 1^m_.2. Сравнение кривых блеска в полосах B, V, R показано на рис. 4. Кривые блеска в трех полосах имеют схожую форму, покрытие по фазе достаточно хорошее.

¹http://www.vgoranskij.net/software/

Рис. 2. Изменение блеска IPHAS 0528 в зависимости от юлианской даты в фильтрах *B* (a), *V* (b), *R_c* (c); заполненные кружки — среднее по периоду значение звездной величины.

Рис. 3. Кривые блеска IPHAS 0528 в фильтре R_c ; показаны два состояния — в 2012 и 2015 гг.

Рис. 4. Кривая блеска IPHAS 0528 в фильтрах B, V, R_c в низком состоянии. К значениям в фильтре B прибавлена одна звездная величина, в фильтре V — две.

ГАБДЕЕВ

Таблица 1. Журнал наблюдений

Date	ID 2400000 +	Object	Filters	Exposure,	Seeing,	Number
Date	3D 2400000 1	Object	1 liters	S	arcsec	of images
Jan 22, 2012	55949	IPHAS 0528	R_c	80	4.0	48
Jan 24, 2012	55951	IPHAS 0528	R_c	60	3.5	80
Sep 13, 2012	56184	IPHAS 0528	R_c	60	2.8	27
Sep 19, 2012	56195	IPHAS 0528	R_c	90	1.8	42
Oct 15, 2012	56216	IPHAS 0528	R_c	100	2.0	71
Oct 18, 2012	56219	IPHAS 0528	R_c	90	2.4	45
Nov 20, 2012	56252	IPHAS 0528	B, V, R_c	100, 70, 50	2.6	16, 16, 16
Dec 12, 2012	56274	IPHAS 0528	R_c	60	1.9	74
Dec 16, 2012	56278	IPHAS 0528	R_c	100	3.9	28
Feb 07, 2013	56331	IPHAS 0528	B, V	120, 80	2.3	33, 33
Nov 01, 2013	56598	RXS 0733	R_c	200	1.8	58
Nov 02, 2013	56599	RXS 0733	R_c	200	1.5	53
Nov 03, 2013	56600	RXS 0733	R_c	300	1.8	41
Nov 04, 2013	56601	RXS 0733	R_c	300	3.6	18
Nov 08, 2013	56605	RXS 0733	R_c	300	3.8	25
Nov 11, 2013	56608	RXS 0733	R_c	300	1.7	28
Nov 25, 2014	56987	RXS 0733	R_c	120	1.6	70
Jan 15, 2015	57038	RXS 0733	R_c	150	2.1	75
Jan 16, 2015	57039	RXS 0733	R_c	150	3.7	70
Jan 17, 2015	57040	IPHAS 0528	B, V, R_c	100, 100, 60	4.1	33, 33, 33
Jan 18, 2015	57041	IPHAS 0528	B, V, R_c	100, 100, 60	1.9	25, 25, 25

Таблица 2. Координаты и звездные величины опорных звезд

Object	α,	δ,	В,	V,	R_c ,
			mag	mag	mag
IPHAS 0528/ref	$05^{h}28^{m}29^{s}.1$	$+28^{\circ}38'32''.4$	15.40 ± 0.01	14.49 ± 0.01	14.51 ± 0.01
RXS 0733/ref	$07^{h}33^{m}41 \stackrel{s}{.}0$	$+26^{\circ}12'42''.1$	16.80 ± 0.01		15.70 ± 0.01

Изменение среднего блеска системы сопровождается изменением показателей цвета (таблица 3). Наибольшее ослабление блеска происходит в красном диапазоне. При увеличении блеска системы с 17 на 18 января 2015 г. объект становится более голубым.

3.2. 1RXS J073346.0+261933

Проведенные долговременные наблюдения позволили более точно определить период изменения блеска системы:

 $HJD = 2457039.563(\pm 0.001)$

 $+0.139095(\pm 0.0000002) E,$

Рис. 5. Изменение блеска RXS 0733 в фильтре *R_c* в зависимости от юлианской даты JD; заполненными кружками показано среднее значение за период.

где нулевая фаза соответствует моменту максимума блеска.

Изменение среднего блеска RXS 0733 в полосе R_c в зависимости от юлианской даты показано на рис. 5.

Блеск системы плавно увеличился приблизительно на 0^m75 до средней звездной величины 17^m7. Кривая блеска синусоидальна и сохраняет свою форму (рис. 6). Амплитуда орбитальной переменности блеска составляет примерно 1^m. На кривой блеска имеется провал глубиной 0^m2 в фазе $\varphi = 0.1$. Отметим, что на кривой блеска в работе [8] также наблюдается локальный разброс измерений вблизи максимума. Он, видимо, связан с неточностью определения периода.

4. ЗАКЛЮЧЕНИЕ

В данной работе представлены долговременные фотометрические наблюдения двух кандидатов в поляры. По результатам наблюдений определен орбитальный период системы IPHAS 0528 —

Таблица 3. Средний блеск и показатели цвета IPHAS 0528

JD 2400000 +	V,	V - R	B - V
	mag	mag	mag
56252	15.59	-0.18	0.33
56331	15.57	_	0.36
57040	15.75	-0.35	0.33
57041	15.51	-0.47	0.37

Рис. 6. Кривая блеска RXS 0733 в фильтре R_c . Показаны два состояния — 2013 и 2015 гг.

 $P_{\rm orb} = 0.4055592(4)$, и уточнен период RXS 0733 — $P_{\rm orb} = 0.4139095(2)$. Анализ кривых блеска показал, что системы обладают характерными фотометрическими особенностями поляров — высокой орбитальной (приблизительно 1^m) и долговременной переменностью блеска. У IPHAS 0528 изменяются форма кривой блеска и показатели цвета в зависимости от среднего уровня блеска системы. Провалы, обнаруженные на кривых блеска, часто встречаются у поляров и связаны с частичным затмением аккреционной структуры. Для изучения этих и других особенностей необходимы дальнейшие наблюдения. Анализ фотометрических наблюдений подтверждает, что обе системы могут принадлежать классу поляров.

БЛАГОДАРНОСТИ

Автор выражает благодарность Ольге Ивановне Спиридоновой за получение части наблюдательного материала и Николаю Владимировичу Борисову за ценные советы и консультации. Работа выполнена при финансовой поддержке Российского научного фонда (РНФ 14-50-00043). Наблюдения на телескопе Цейсс-1000 САО РАН проводятся при финансовой поддержке Министерства образования и науки Российской Федерации (соглашение № 14.619.21.0004, идентификатор проекта RFMEFI61914X0004).

СПИСОК ЛИТЕРАТУРЫ

- S. B. Howell, L. A. Nelson, and S. Rappaport, Astrophys. J. 550, 897 (2001).
- B. Kalomeni, Monthly Notices Royal Astron. Soc. 422, 1601 (2012).

- 3. Z. Dai, S. Qian, and L. Li, Astrophys. J. **774**, 153 (2013).
- 4. N. F. Vojkhanskaya, Bull. Spec. Astrophys. Obs. **30**, 1 (1990).
- 5. M. Cropper, Space Sci. Rev. 54, 195 (1990).
- A. R. Witham, C. Knigge, A. Aungwerojwit, et al., Monthly Notices Royal Astron. Soc. 382, 1158 (2007).
- J. Patterson, Publ. Astron. Soc. Pacific 106, 209 (1994).
- 8. D. V. Denisenko, A. J. Drake, S. G. Djorgovski, et al., Astronomy Letters **37**, 858 (2011).
- 9. A. U. Landolt, Astron. J. 104, 372 (1992).
- J. Lafler and T. D. Kinman, Astrophys. J. Suppl. 11, 216 (1965).

Photometric Monitoring of Polar Candidates

M. M. Gabdeev

We present photometric observations of two polar candidates, IPHAS J052832.69+283837.6 and 1RXS J073346.0+261933. Both objects reveal brightness variations related to the orbital period with an amplitude of about 1^m, and about 0^m5 on the long-term scale. The object IPHAS J052832.69+283837.6 also exhibits variations of color indices and light curve shape. Long-term observations allowed us to determine the orbital period of the first system and refine the orbital period of the second system, which proved to be $P_{\rm orb} = 0.4055592(4)$ and $P_{\rm orb} = 0.4139095(2)$ respectively. The photometric data analysis proves that these systems are polars.

Keywords: novae, cataclysmic variables—stars: individual: IPHAS J052832.69+283837.6, IRXS J073346.0+261933