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Abstract  We consider two “wonders” of hybrid stars, i.e. stars which contain a core made of quark matter. 

First, we explain the existence of a very small region on the mass–radius (M-R) diagram of hybrid stars 

where all of the lines representing the sequences of models with different values of the bag constant B 

intersect. This circumstance is shown to be a consequence of the linear dependence of pressure on energy 

density in the quark cores of hybrid stars. Second, we show that the unusual thermodynamic properties of 

matter within the region of two-phase coexistence in hybrid stars result in a change of the standard condition 

for beginning of convection. In particular, the thermal flux transported by convection may be directed 

towards the stellar center. We discuss favorable circumstances leading to such an effect of “inverse” 

convection and its possible influence on the thermal evolution of hybrid stars. 
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1. Introduction 

Neutron stars, together with stellar mass black holes, develop from collapsing cores of massive stars at 

the final stages of their evolution. The birth of a neutron star most likely manifests itself as a supernova 

explosion. The major part of matter in neutron stars proves to be in an extreme state with a density 

exceeding the nuclear one ρn ≈ 2.6×10
14 

g cm
-3

. The possibility of phase transitions (PTs) in nuclear 

matter was first supposed by Gurevich [1]. Then Ivanenko & Kurdgelaidze [2] and Itoh [3] advanced 

hypotheses concerning stars composed of quark matter. Nowadays there exists an extensive literature on 

neutron stars, quark stars, and neutron stars containing quark cores (the so-called hybrid stars).  

The properties of hybrid stars are of great importance for explaining the supernova explosion 

mechanism in the simplest case where there are no magnetic field and rotation. This is because the PT to 

quark matter that arises at the boundary between the core of a hybrid star and its crust can be responsible 

for the development of hydrodynamic instability ending with a supernova explosion. 

Here we concentrate our attention on two unusual properties of hybrid stars: the existence of a “special 

point” on its mass-radius diagram and the “inverse” convection which can occur inside such a stars.  

2. Special point 

The published models of hybrid stars show a surprising peculiarity. On the mass–radius (M−R) 

diagram, all of the lines representing the sequences of models with different constant values of the bag 

constant B intersect in a very small region that we arbitrarily call a “point” here. To construct the stellar 

models, we use an equation of state (EOS) with the phase transition to quark matter at high densities. An 

approximation of the EOS from [4] is applied for the low density component of the matter. The quark 

component is described by the simplest version of the bag model in which the relation between pressure 

P  and total energy per unit volume ε is linear: 

  
1

4 ,
3

P B   (1.1) 

where B is the quark bag constant. This approximation is widely used in modeling the properties of 
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quark matter and is a special case of the group of linear EOSs: P = α(ε – ε0), where the dimensionless 

constant 0 ≤ α ≤ 1 means the square of the speed of sound measured in units of the speed of light, α = 

(cs / c)
2
. The bag constant B is a free model parameter and, in the simplest case, is uniquely related to the 

density at which the phase transition begins. 

The mass–radius diagram for hybrid stars calculated for our EOS is shown in Fig. 1. 

 

 

Fig1. Mass–radius diagram of hybrid stars for various values of the parameter B.  

The thick line here indicates the dependence M(R) for the EOS without any phase transition to quark 

matter. The thin lines indicate these dependences for various values of the parameter B (the values of B 

are indicated by the numbers in units of MeV fm
−3

). The density at which the phase transition begins ρ1 is 

uniquely related to B. For example, B = 120 corresponds to ρ1 ≈ 2ρn, while for B = 145 we have ρ1 ≈ 3ρn. 

The curve with B =100 describes an almost pure quark star with a thin crust made of ordinary matter and, 

therefore, exhibits a dependence M(R) typical of such stars. On the other hand, as can be seen from the 

figure, all stars with quark cores at B ≥ 160 are unstable. Naturally, these specific values are unique to our 

model EOS.  

Let us now turn to the formulation of the problem. As can be seen from Fig. 1, all curves with different 

B intersect in a very narrow region on the (M−R) diagram (but not at a point!). This property, which is 

surprising per se, not only leads to some interesting consequences that we will discuss in conclusion but 

also undoubtedly requires an explanation. Note also that such a behavior of the curves M(R) is not a 

unique property of precisely our EOS. The same effect can be seen, for example, in [5] – [7]. 

2.1. The brief explanation 

Here we can only outline our explanation of this effect (for details see [8]). First, we need to compare 

the structures of stars near the point of intersection in Fig. 1. These stars corresponding to different 

values of the parameter B should have similar masses and radii. From this analysis, we see that these 

stars have a virtually identical crust made of ordinary matter to which a quark core is “stitched” at 

different depths, depending on the parameter B. Thus, when changing the parameter B, the quark 

matter–ordinary matter boundary is shifted, leaving the crust virtually unchanged.  

We formalize this condition, starting from the stellar equilibrium equations under general relativity 
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conditions (the Tolman–Oppenheimer–Volkoff equations) and the phase equilibrium conditions at the 

boundary. After some mathematical manipulations we obtained the main equation of the problem, which 

must hold for “special point” property existence. To solve this equation, we use the homologous 

variables trick and show that our quark EOS really satisfies this conditions to some extent (i.e. not 

exactly, that’s why “a special point” in reality is a small domain).  

The existence of “a special point” on the mass–radius diagram of hybrid stars appears to be a 

consequence of mostly two factors. The first one is the linearity of quark EOS (1.1). This property is 

characteristic of a simplest bag model of quark matter, but it also holds with very high accuracy for more 

realistic quark EOSs [9]. The second factor is a small value of the parameter 1/3  . The smaller is this 

parameter, the more exact is the homology property for the main equation. And inversely: at higher 

values of   the domain of intersection of M(R) curves would be broader.  

2.2. Discussion 

We established that the stars at “the special point” are “masked”, hiding their true structure under the 

veil of observable quantities (M and R). Consider this aspect of the problem. Let us adopt the linearity of 

the quark EOS and assume that we know the true EOS of nuclear matter without any phase transitions 

that gives a thick enveloping curve on the (M−R) diagram (see Fig. 1). Then, were it not for the special 

point, only one measurement of the stellar mass and radius not only could say us whether such a star is a 

purely neutron or hybrid one (or, as a limiting case, a purely quark one) but could also point to 

parameters of quark matter. However, the existence of the special point changes the situation: the 

measuring of mass and radius of a star in its vicinity will only say us that this star contains a quark core, 

but neither its structure nor the parameters of quark matter will be determined. Either invoking additional 

information (for example, the cooling rate if the star was hot) or measuring the parameters of other 

hybrid stars to gain statistics and reconstruct the true curve M(R) will be required. 

 

3. Inverse convection  

In a hybrid star the quark core is separated from the outer nuclear matter envelope by an intermediate 

layer where the PT between nuclear and quark matter occurs. Within this region of coexistence of 

nuclear and quark phases there is a possibility that pressure decreases as temperature increases at 

constant density. Such an effect was mentioned, for instance, in [10] – [12]. In single phases of quark or 

hadronic matter usually the opposite is the case, i.e. the pressure increases with growing temperature at 

constant density. According to the Clapeyron–Clausius formula (see, e.g., [13]) the temperature 

derivative of pressure along the PT line in the phase diagram is given by: 

 

 2 1

2 1

0.
1 1

pt

P S S

T

 

  
  

  

 (1.2) 

 

Here S1, 2 and ρ1, 2 are the entropies per baryon and densities of phases 1 and 2 in the region of their 

coexistence. We consider here the simplest Maxwellian description of PT. The negative sign of the 

derivative in equation (1.2) thus appears because the quark phase has a higher entropy per baryon, S2 > 

S1 (note that ρ2 > ρ1). This also implies that to go from the low-density phase 1 to the high-density phase 

2 at a fixed temperature the system absorbs the thermal energy per baryon Δq = T (S2 − S1) > 0. As we 

will show in the next section, this property ensures very unusual convection properties in the layer of 

phase coexistence.  
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3.1. The conditions for convection 

Let us consider a schematic view of the phase diagram in the density–temperature plane (Fig. 2):  

 

Fig2. Schematic view of a phase diagram for the transition between hadronic and quark matter.  

The boundaries of the phases are shown by bold dashed lines. The region between the lines 

corresponds to two-phase coexistence. An isentropic curve (S = const) is shown by the solid line. One 

can observe that in the phase coexistence region the temperature begins to decrease along the isentropic 

curve when the density increases. Such a behavior of the PT was indicated by a number of authors (see 

e.g. [14]).  

Consider for example a convective element that starts its adiabatic motion in the interior of a hybrid 

star at point A and moves outwards reaching point A’. So it keeps the initial entropy but has along its way 

the same pressure and hence temperature (let us remind that we consider the Maxwellian PT) as the 

environment. If on its way the convective element proves to be denser than the environment (point C) it 

will begin to sink. Such a configuration is convectively stable. On the contrary, when the state of the 

environment corresponds to point B, the density of the convective element is lower than that of the 

environment and it continues to rise – the configuration is convectively unstable. The entropy of 

environment in point B is higher than in point A’. Therefore the condition of appearance of convection 

reads 

 0.
dS

dr
  (1.3) 

This condition has the inequality sign opposite to the common Schwarzschild criterion.  

We can write the general criterion of appearance of convection in the well-known Ledoux form: 

 
, ,

0.
P Y P S

dS dY

S dr Y dr

     
    

    
 (1.4) 

For simplicity we assume below Y = const (chemically uniform conditions). Then the onset of 

convection depends on the distribution of entropy in the star (the term dS/dr in equation (1.4)) and the 

sign of the term 
,P YS

 
 
 

. In the nonrelativistic limit we have 
2c   with с being the baryon mass 

density. Therefore up to a factor c
2
 the multiplier in front of dS/dr is given by 
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 (1.5) 

where we introduce the adiabatic index γ and the specific heat capacity cV. For matter under common 

conditions the right-hand side of equation (1.5) is obviously strictly negative and we obtain the criterion 

for onset of convection in the Schwarzschild form: 

 0.
dS

dr
  (1.6) 

Hence, a negative gradient of entropy causes the onset of convection. However, within the 

phase-coexistence region the derivatives 
S

P

T

 
 
 

 and 
P

T 

 
 
 

can be negative and as a result the 

Schwarzschild criterion changes its sign. The negative entropy gradient in this region ensures the 

convective stability while the positive one stimulates the development of a convective instability. Let us 

consider now the general case. One can easily show that the factor in front of dS/dr in equation (1.4) is 

equal to 

 
,

1 .
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T

PS
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 


 
   
         

    

 (1.7) 

In the non-relativistic limit the second term in square brackets is much larger than 1 and equivalent to 

equation (1.5). If 0
S

P

T

 
 

 
, the sign of this term as well as the criterion of convection change again. 

 

3.2. Discussion and conclusions 

We need to emphasize that the possibility of “inverse” convection discussed here is the direct 

consequence of the unusual property of the deconfinement PT expressed by equation (1.2). For example, 

for the nuclear liquid–gas PT the condition for convection will have the ordinary form as for single 

phases of quark and hadronic matter. 

The consequences of possible existence of the “inverse” convection zone in a hybrid star can be 

conceived by looking at Fig.2. In the case of well-developed convection an ascending matter element 

that travels from A to A’ has lower entropy than the environment and thus lower heat content. Similarly, 

a descending element has higher heat content than the environment. Therefore in contrast to ordinary 

convection, within the “inverse” convection zone the heat flux is directed inwards in a star. 

Currently, the neutrino-driven scenario is the favored explosion mechanism of core-collapse 

supernovae. In this scenario turbulence and convection are crucial to achieve sufficient neutrino heating 

of matter to trigger an explosion. If the “inverse” convection appeared already in the early post-bounce 

phase of the supernovae, in principle it could also impact the explosion dynamics. These possibilities 

require further investigation by detailed numerical simulations.  

Acknowledgements 

I would like to acknowledge my co-authors D. K. Nadyozhin, M. Hempel and T. L. Razinkova. I’m 

also thankful to the RFBR grant (project no. 14-22-03040 ofi-m) for financial support. 



167 
 

References 

[1] I. Gurevich, 1939, Nature, 144, 326. 

[2] D.D. Ivanenko, D.F. Kurdgelaidze, 1965, Astrofizika, 1, 479. 

[3] N. Itoh, 1970, Prog. Theor. Phys., 44, 291. 

[4] F. Douchin and P. Haensel, Astron. Astrophys. 380,151 (2001). 

[5] K. Schertler, C. Greiner, J. Schaffner-Bielich, and M.H. Thoma, Nucl. Phys. A 677, 463 (2000). 

[6] E.S. Fraga, R.D. Pisarsi, and J. Schaffner-Bielich, Nucl. Phys. A 702, 217 (2002). 

[7] I. Sagert, M. Hempel, G. Pagliara, et al., J. Phys. G 36, 6 (2009). 

[8] A.V. Yudin, T.L. Razinkova, D.K. Nadyozhin, A.D. Dolgov. Astron. Lett., 2014, 40, 4, 201. 

[9] J.L. Zdunik and P. Haensel Astron. & Astroph. 551, A61 (2013). 

[10] A.V. Yudin, T.L. Razinkova, D.K. Nadyozhin, 2013, Astron. Lett., 39, 161. 

[11] M. Hempel, V. Dexheimer, S. Schramm, I. Iosilevskiy, 2013, Phys. Rev. C, 88, 1. 

[12] I. Iosilevskiy, 2014, preprint (arXiv:1403.8053). 

[13] L.D. Landau, E.M. Lifshitz, 1980, Statistical Physics, Part 1, 3rd edn. Pergamon Press, Oxford. 

[14] A. Steiner, M. Prakash, J.M. Lattimer, 2000, Phys. Rev. B, 486, 239. 

  


