Первые результаты наблюдений лунных покрытий в различных диапазонах спектра на 6-м телескопе САО РАН

Шмайлова Екатерина^{1,2}, В. Дьяченко¹, А. Рикики³, А. Митрофанова¹, А. Бескакотов¹, А. Максимов¹, Ю. Балега¹

1 - CAO PAH

2 - СПбГУ

3 - INAF – Osservatorio Astrofisico di Arcetri, Italy

Метод лунных покрытий

Значительно расширить возможности метода можно, если получать фотометрические кривые в нескольких диапазонах спектра одновременно.

V. Dyachenko et al., 2018, MNRAS, 478, 5683-5688

A. Richichi et al., 1992, A&A, 265, 535

A. Richichi, 1989, A&A, 226, 366

Метод лунных покрытий

Метод лунных покрытий

N.M. White, 1980, AJ, 242, 646-656

P.M. Harvey, A. Oldag, 2007, AJ, 663, 543-552

Данный метод был реализован с помощью гризмы, представляющей собой соединенные призму (PS814, Thorlabs, преломляющий угол 18°) и решетку (#49-579, Edmund Optics, 300 штр/мм, угол блеска 17.5°).

Гризма в оптической системе.

Инструмент

Поведение лучей при прохождении через гризму. ξ - угол блеска решетки, А - преломляющий угол призмы, В, С - вспомогательные углы преломления внутри призмы, D - угол падения света на решетку, φtheor - угол отклонения лучей в призме. n1, n2 - показатели преломления вещества призмы и решетки соответственно. b - расстояние между поверхностью решетки и детектором.

Инструмент

Изображение спектра Omi Cet. Сверху пример изображения, полученного в гризме, (инвертированные цвета); снизу распределение интенсивности по пикселам и длинам волн.

Инструмент

Figure 1. Components of the optical-mechanical unit of the BTA speckle interferometer. The numbers indicate: 1 - the focal plane of the telescope, 2 - the micro-lens, 3 - the compensator of the atmospheric dispersion, 4 - the grism in the filter turret, 5 - the mask, 6 - the EMCDD detector.

На схеме представлена модификация спекл-интерферометра.

Maksimov et al., 2009, Astrophys. Bull., 64, 296

Объект: HD 36524

Покрытие объекта 18 января 2019.

RA: 05 h 33 m 06.94 s

Dec: +20° 02' 07."71

Разделение между компонентами на 2015 год - 3".80

Данная система фотометрически разделима.

	π	Sp.T.	В	V	R	К
HD 36524 A	20.9446	G9	9.84	9.01	9.06	6.713
HD 36524 B	22.0430	К4	11.75	10.67	10.0	6.761

Изображение звезды HD 36524 из обзора DSS2.

Наблюдения

Усредненные серии кадров покрытия звезды HD 36524 на 6-м телескопе САО РАН содержащие спектр: двух звезд (верхняя панель слева), одной звезды (верхняя панель справа), фона (нижняя панель).

Микрообъектив x2.5, поле 28".2. Параметры камеры: ktc 2.56 ms, время экспозиции 0.5 ms, binning 8x8, ROI 512x192. Размер кадра 64x24 пиксела, серия 100 000 кадра.

Наблюдения

Кривая покрытия звезды HD 36524 в диапазоне длин волн от 602.9 до 905.3 нм

Оценка угловых размеров

	van Belle	Benedetto	Adams
HD 36524 A	0.24 mas	0.22 mas	0.22 mas
HD 36524 B	0.25 mas	0.25 mas	0.26 mas

Сравнение угловых диаметров, рассчитанных различными эмпирическими методами.

Все три метода основаны на эмпирическом соотношении между показателем цвета V-К и угловым диаметром.

Значения, полученные разными способами, сходятся между собой, обеспечивая угловые диаметры за пределами нашего разрешения. G.T. van Belle, 1999, PASP, 111, 766

G.P.Di Benedetto, 2005, MNRAS, 357, 174-190

A.D. Adams et al., 2018, MNRAS, 473, 3608-3614

Максимизация ОСШ

Путем перебора возможных диапазонов пикселей и кадров были найдены оптимальные - обеспечивающие максимальное отношение сигнал-шум (ОСШ). Распределение ОСШ в зависимости от рассматриваемого диапазона приведено на

Максимизация ОСШ

Области суммирования сигнала для диапазонов R и I (белые прямоугольники). Слева: среднее по кадрам, содержащим сигнал от одной звезды; справа: среднее по кадрам, содержащим сигнал от обоих компонентов. Спектры компонентов обозначены буквами A и B соответственно.

Кривые покрытия

Кривые покрытия звезды HD 36524 в диапазонах (сверху) R: 602.9-727.7 нм и (снизу) I: 732.5-881.3 нм.

Характеристики объекта

	ОСШ	Отношение интенсивностей	Измеренная разность блеска	Разность блеска (USNO-B)	Разность блеска (пересчет данных GAIA)
filter R	7.907	4.1 ± 1.1	1.53 ± 0.28	0.94 ± 0.2	1.48 ± 0.05
filter I	6.607	3.4 ± 1.0	1.34 ± 0.32	-	1.29 ± 0.05

Измеренные и рассчитанные характеристики для компонентов системы HD 36524 в фильтрах R и I. Литературные значения пересчитаны из данных GAIA, для фильтра R также приведены значения из каталога USNO-B.

$$G - R = -0.003226 + 0.3833 (G_{bn} - G_{rp}) - 0.1345 (G_{bn} - G_{rp})^{2}$$

$$G - I = 0.02085 + 0.7419 (G_{bp} - G_{rp}) - 0.09631 (G_{bp} - G_{rp})$$

Выводы

Был **реализован новый метод** наблюдения лунных покрытий. Он позволяет получать измерения с высоким угловым разрешением в различных диапазонах спектра. В качестве спектрального элемента мы использовали **гризму**.

Проведены тестовые наблюдения с модифицированной оптической системой на телескопе Цейсс-1000 (28-29 октября 2018), в 2019 году проведены наблюдения на БТА. Впервые с использованием новой схемы наблюдалась двойная звезда HD 36524, которая демонстрирует применимость метода для двойных систем.

В результате обработки наблюдений были измерены относительные потоки. В диапазонах, близких к R (602.9-727.7 нм) и I (732.5-881.3 нм), разности блеска составили **1.53 ± 0.28** и **1.34 ± 0.32** соответственно. По литературным данным разности блеска составляют 1.48 ± 0.05 и 1.29 ± 0.05 в фильтрах R и I.

Для звезд **9-10 звездной величины** в фильтре **R** мы получили **ОСШ 7.9**, а в фильтре I - 6.6, что является хорошим и надежным результатом.

Спасибо за внимание!

