УДК 524.7-77

РАДИО- И ОПТИЧЕСКИЕ СПЕКТРЫ ОБЪЕКТОВ ИЗ ДВУХ ПОЛНЫХ ВЫБОРОК РАДИОИСТОЧНИКОВ

© 2001 г. В. Чавушян¹, Р. Мухика¹, А. Г. Горшков², В. К. Конникова², М. Г. Мингалиев³, Х. Р. Валдес¹

¹Национальный институт астрофизики, оптики и электроники, Пуэбла, Мексика ²Астрономический институт им. П.К. Штернберга, Москва, Россия ³Специальная астрофизическая обсерватория, пос. Нижний Архыз, Россия Поступила в редакцию 10.03.2000 г.

Представлены результаты классификации оптических отождествлений и спектры в радиодиапазоне 10 радиоисточников из двух полных по плотности потока выборок радиоисточников. Для 4 объектов приведены характеристики переменности в радиодиапазоне. Наблюдения проводились на радиотелескопе РАТАН-600 в диапазоне частот 0.97–21.7 ГГц и на 2.1-м телескопе обсерватории им. Г. Аро в Мексике в диапазоне 4200–9000 Å. Из 10 исследованных объектов 3 оказались квазарами, 4 – лацертидами, 2 – радиогалактиками и 1 – сейфертовской галактикой 1-го типа. Два источника 0509+0541 и 0527+0331, отождествленные с лацертидами, показывают быструю переменность на масштабах времени от 7 до 50 дней.

1. ВВЕДЕНИЕ

В данной статье приведены результаты классификации оптических отождествлений и спектры в радиодиапазоне для 10 источников, а также характеристики переменности для 4 источников из двух полных по плотности потока выборок радиоисточников. Первая выборка содержит все источники из Зеленчукского обзора с потоками S > 200 мЯн на частоте 3.9 ГГц и охватывает 24^h по прямому восхождению в области склонений 4°–6° (В1950) и галактических широт |b| > 10° [1]. Вторая выборка получена из обзора MGB на частоте 4.85 ГГц и содержит источники с плотностями потоков S > 100 мЯн в области склонений 74°– 74°44′ (J2000).

Одной из целей исследования данных выборок является попытка обнаружения космологической эволюции квазаров. На сегодняшний день только для выборок с большими предельными потоками (S > 1 Ян) получены красные смещения для большинства объектов [2]. Однако в этих выборках недостаточно далеких квазаров (в выборках, рассмотренных в указанной работе, среднее красное смещение z = 0.7), что не позволяет исследовать эффекты эволюции. Достаточно низкий предельный поток исследуемых нами выборок, приводит к тому, что в них присутствует значительное число далеких квазаров. Среди уже отождествленных квазаров половина имеют красное смещение z > 1.4. Кроме того, до $z \approx 1$ наблюдается вся функция светимости квазаров в радиодиапазоне, поэтому исследования указанных выборок перспективны для получения космологических зависимостей.

Данная статья является продолжением работы по классификации оптических отождествлений радиоисточников из полных выборок, начатой в 1998 г. [3].

2. ОПТИЧЕСКИЕ НАБЛЮДЕНИЯ

Спектры объектов получены в марте–августе 1999 г. в Мексике на 2.1-м телескопе обсерватории им. Г. Аро (Guillermo Haro Observatory in Cananea) Национального института астрофизики, оптики и электроники (INAOE). При наблюдениях использовался спектрофотометр LFOSC, оборудованный ССD-матрицей 600 × 400 пикс. [4]. Шумы считывания детектора составляли 8 эл. Диапазон длин волн спектрофотометра составлял 4200–9000 Å с дисперсией 8.2 Å. Эффективное инструментальное спектральное разрешение было около 16 Å.

Обработка наблюдений проводилась с помощью пакета IRAF и включала в себя устранение космических лучей, коррекцию плоского поля, линеаризацию длины волны и калибровку потока. Звездные величины 7 объектов получены из "Automated Plate Scaner Catalog of the Palomar Sky Survey" [5].

3. РАДИОНАБЛЮДЕНИЯ

Наблюдения источников в радиодиапазоне проводились на Южном секторе радиотелескопа РАТАН-600 с плоским отражателем на частотах 3.9 и 7.5 ГГц в 1980–1991 гг. и на Северном и Южном секторах на частотах 0.97, 2.3, 3.9, 7.7, 11.1 и

Имя объекта	Радиокоординаты Ј2000		Оптические ко	Ссылка	
0509+0541	05 ^h 09 ^m 25 ^s .97	+05°41'35".34	05 ^h 09 ^m 25 ^s .99	+05°41′35".4	JVAS2
0527+0331	05 27 32.70	+03 31 31.50	05 27 32.70	+03 31 31.4	JVAS2
0905+0537	09 05 07.47	+05 37 16.76	09 05 07.46	+05 37 16.6	NVSS
1027+7440	10 27 39.10	+74 40 04.7	10 27 39.20	+74 40 04.4	NVSS
1243+7442	12 43 45.03	+74 42 37.13	12 43 44.90	+74 42 38.0	JVAS1
1411+7424	14 11 34.74	+74 24 29.1	14 11 34.75	+74 24 29.1	NVSS
1424+0434	14 24 09.50	+04 34 52.06	14 24 09.58	+04 34 51.3	JVAS2
1426+0426	14 26 28.92	+05 26 58.12	14 26 28.99	+04 26 58.2	NVSS
1511+0518	15 11 41.27	+05 18 09.26	15 11 41.28	+05 18 09.1	JVAS2
1923+7404	19 23 23.04	+74 04 04.9	19 23 23.48	+74 04 05.1	NVSS

Таблица 1. Радио- и оптические координаты исследуемых объектов

21.7 ГГц в 1996–1999 гг. Параметры используемых приемников и характеристики диаграмм направленности Северного и Южного секторов РАТАН-600 приведены в работах [6-8]. В каждой серии источники наблюдались от 15 до 100 дней. Плотность потока источника определялась путем осреднения всех данных в каждой серии. Ошибка измерения плотности потока определялась стандартным способом из разброса потоков, открываемых каждый день в данной серии наблюдений. Полученная ошибка включает в себя все виды ошибок: шумовую, ошибку калибровки, ошибку привязки калибровочного сигнала, ошибки установки антенны и т.д. Методика обработки описана в работе [9].

Шкалы плотностей потоков, полученных в разные годы, приведены к шкале, принятой в работе [8].

4. РАДИО- И ОПТИЧЕСКИЕ КООРДИНАТЫ

В табл. 1 приведены радио- и оптические координаты исследуемых объектов. Имена источников составлены из часов и минут прямого восхождения и градусов и минут склонения на эпоху J2000. Наиболее точные радиокоординаты исследуемых объектов приведены в каталогах JVAS2¹(частота 8.4 ГГц [10], среднеквадратичная ошибка координат 0.014"), JVAS1 [11] (среднеквадратичная ошибка координат 0.012") и обзоре NVSS² [12] (частота 1.4 ГГц; среднеквадратичная ошибка в среднем около 0.11" и 0.56" для прямых восхождений и склонений соответственно). Оптические координаты получены из оцифрованного Паломарского обзора.

5. РЕЗУЛЬТАТЫ

Спектры всех объектов в радио- и оптическом диапазонах приведены на рис. 1 и 2.

Источник 0509+0541 (0506+056)

В скобках приведено старое название источника по эпохе B1950.

С 1980 по 1991 гг. источник наблюдался на РАТАН-600 в 8 сериях на частотах 3.9 и 7.5 ГГц. Максимальная плотность потока зарегистрирована в октябре 1984 г. и равна $S_{(3.9)} = 894 \pm 29$ мЯн и $S_{(7.5)} = 895 \pm 65$ мЯн; минимальная плотность потока в августе 1991 г. составляла $S_{(3.9)} = 450 \pm 25$ мЯн и $S_{(7.5)} = 420 \pm 22$ мЯн (приведенные здесь ошибки – среднеквадратичные ошибки измерения). Средневзвешенная плотность потока $\langle S \rangle$ за период наблюдения на частотах 3.9 и 7.5 ГГц равна 536 мЯн и 531 мЯн соответственно. Индекс переменности за 1984–1991 гг. $V = dS/\langle S \rangle$, рассчитанный с учетом индивидуальных ошибок по принятой в работах [1, 13], методике равен 0.5 на обеих частотах.

С 1996 г. источник наблюдался на 6 частотах. В 1999 г. источник был включен в программу поиска переменности плотности потока на малых временных масштабах и наблюдался с 22 мая 1999 г. ежедневно в течение 100 дней. На рис. 1 приведен спектр источника на эпохи 08.1997 и 07.1999. Обращает на себя внимание значительная переменность на низких частотах (0.97 и 2.3 ГГц). У данного источника протяженная компонента мала, основную долю в излучение дает компактная компонента. В спектре 08.1997 максимум плотности потока достигается на частоте около 12 ГГц. В 1999 г. источник находился в более активной фазе и максимум плотности потока в спектре сместился в более высокочастотную область, спектр источника с учетом ошибок аппроксимируется логарифмической параболой

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 78 № 2 2001

¹ JVAS – The Jodrell Bank-VLA Astrometric Survey.

² NVSS – The NRAO VLA Sky Survey.

Рис. 1. Радио- и оптические спектры объектов 0509 + 0541, 0527 + 0331, 0905 + 0537, 1027 + 7440 и 1243 + 7442.

 $lgS = 2.727 + 0.173 lgv - 0.044 lg^2v$ (здесь плотность потока в мЯн, частота в ГГц). В этот период у источника обнаружена переменность на частотах 3.9 и 2.3 ГГц на временно́м масштабе меньше 10 дней, а также циклическая переменность на этих же частотах (возможно, и на частоте 7.7 ГГц) с квазипериодом 52 дня. Циклическая переменность коррелированна на этих частотах.

Источник неразрешен на VLA в конфигурации В [14]. В этой же работе источник отождествлен со звездообразным объектом 16^m и 15.5^m на *О*- и *Е*-картах Паломарского обзора соответственно. В 1992 г. по нашей просьбе на БТА³ был получен спектр этого объекта [15]. Авторы предварительно классифицировали объект как относящийся к классу BL Lac.

Оптический спектр объекта, приведенный на рис. 1 получен 15.03.1999 с экспозицией 40 мин. Спектр чисто континуальный, поэтому, без сомнения, источник 0509+0451 является объектом типа BL Lac.

Источник 0527+0331 (0524+034)

Это – уникальный источник, обладающий наибольшей амплитудой долговременной переменности плотности потока из всех известных радиоисточников. С 1988 по 1998 гг. плотность потока

³ БТА – Большой телескоп Азимутальный САО РАН.

Рис. 2. Радио- и оптические спектры объектов 1411 + 7422, 1424 + 0434, 1426 + 0426, 1511 + 0518 и 1923 + 7404.

на частоте 7.7 ГГц увеличилась более чем в 20 раз. Характер долговременной переменности описан в работе [16], индекс переменности за период 1984–1991 гг. $V = dS/\langle S \rangle = 1.9$. Кроме того, по данным наблюдений с 3 января по 25 февраля 1998 г. у источника обнаружена значительная переменность на временных масштабах, не превышающих 10 дней [17]. Во время этих наблюдений источник находился в фазе активности, близкой к максимуму, его усредненный за данный период спектр приведен на рис. 1 крестиками. Плотность потока растет к высоким частотам.

С 22 мая 1999 г. источник наблюдался ежедневно в течение 100 дней. Усредненный спектр за этот период показан на рис. 1 ромбиками. Несмотря на то, что поток источника на всех частотах уменьшился почти в 5 раз, относительная амплитуда быстрой переменности и характерные времена не изменились.

Источник отождествлен с объектом 20^{*m*} (*О*-величина). Оптический спектр объекта получен 13.10.1999 с экспозицией 60 мин. Спектр чисто континуальный, объект может быть отнесен к классу лацертид.

Источник 0905+0537 (0902+058)

Источник имеет постоянную плотность потока. На частотах от 0.97 до 11.1 ГГц спектр степенной: $S = 627v^{-0.920}$ мЯн.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 78 № 2 2001

Радиоисточник отождествлен со звездообразным объектом, звездные величины на O- и *E*-картах POSS равны 18.1^m и 16.9^m соответственно. Оптический спектр объекта получен 15.03.1999 с экспозицией 60 мин. В спектре присутствует одна мощная линия излучения на длине волны 6200 Å, которая интерпретирована как линия магния MgII = 2798 Å на красном смещении z = 1.216. Объект можно отнести к классу квазаров.

Источник 1027+7440

В диапазоне частот 0.97–11.1 ГГц источник имеет степенной спектр: $S = 597 v^{-0.728}$ мЯн.

Звездная величина объекта, отождествленного с 1027+7440 на O- и E-картах POSS равна 17.8^m и 14.1^m соответственно. Оптический спектр источника получен 03.06.1999 с экспозицией 35 мин. В спектре присутствуют 4 линии поглощения, которые соответствуют линиям водорода H β 4861 Å, магния MgI 5175 Å железа FeI 5270 Å и натрия NaI 5986 Å на красном смещении z = 0.122. Спектр позволяет отнести объект к классу радиогалактик.

Источник 1243+7442

Спектр источника в радиодиапазоне получен в сентябре 1998 г. и в диапазоне 2–21 ГГц представляется логарифмической параболой $\lg S = 1.649 + 1.729 \, \lg v - 0.608 \, \lg^2 v$. Максимум потока в спектре достигается на частоте около 15 ГГц.

Радиоисточник отождествлен со звездообразным объектом 19.3^{*m*} и 18.6^{*m*} на *О*- и *Е*-картах POSS. В оптическом спектре, полученном 4.06.1999 с экспозицией 60 мин, присутствуют линии излучения на длинах волн 4986, 6641, 7734, 8662 и 8923 Å. Эти линии соответствуют линиям MgII 2798 Å, [OII] 3727 Å, Н γ 4340 Å, Н β 4861 Å и [OIII] 5007 Å на красном смещении *z* = 0.782. Объект классифицирован как квазар.

Источник 1411+7421

Спектр источника в радиодиапазоне получен в сентябре 1998 г., имеет минимальное значение плотности потока на частоте около 4 ГГц, и в диапазоне 2.3–21.7 ГГц аппроксимируется логариф-мической параболой $\lg S = 2.188 - 0.651 \lg v + 0.321 \lg^2 v$. В спектре присутствуют 2 компоненты: протяженная со степенным спектром и компактная со спектром, растущим в сторону высоких частот.

Оптический спектр объекта, отождествленного с 1411+7421, получен 3.06.1999 с экспозицией 40 мин. О- и Е-звездные величины объекта равны

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 78 № 2 2001

17.2^{*m*} и 16.6^{*m*} соответственно. В спектре отсутствуют линии, поэтому объект можно отнести к классу лацертид.

Источник 1424+0434 (1421+048)

Источник наблюдался с 1980 г. на частотах 3.9 и 7.5 ГГц. За это время его плотность потока медленно уменьшалась на обеих частотах (на 3.9 ГГц от 330 мЯн в 1980 г. до 143 мЯн в 1999 г.). Индекс переменности плотности потока $V = dS/\langle S \rangle$ за 1984-1991 гг. равен 0.25 на обеих частотах.

С 1996 г источник наблюдался на 6 частотах, на рисунке представлены его спектры на эпохи 11.1997 и 07.1999. Оба спектра обнаруживают минимум на частоте 5–6 ГГц, падение потока проходит без существенного изменения вида спектра. Спектр, полученный в эпоху 07.1999, аппроксимируется логарифмической параболой

$\lg S = 2.341 - 0.437 \lg v + 0.259 \lg^2 v.$

При ежедневных наблюдениях с 22 мая 1999 г. в течение 100 дней не обнаружено значимой переменности плотности потока на масштабах меньше нескольких недель.

Радиоисточник отождествлен со звездообразным объектом 20.1^{*m*} и 18.6^{*m*} на *О*- и *E*-картах POSS. Оптический спектр объекта получен 4.06.1999 с экспозицией 40 мин. Спектр – без заметных линий, поэтому объект можно отнести к классу лацертид.

Источник 1426+0426 (1423+046)

Источник имеет постоянную плотность потока и степенной спектр в диапазоне 0.365-21.7 ГГц: $S = 610v^{-0.767}$ мЯн. По наблюдениям на VLA на частоте 4.85 ГГц радиоисточник тройной [14]. В этой же работе источник отождествлен со звездообразным объектом, совпадающим с центром тяжести радиоизлучения.

Звездная величина объекта на *O*- и *E*-картах POSS равна 19.1^m и 18.1^m соответственно. В оптическом спектре объекта, полученном 5.06.1999 с экспозицией 40 мин, присутствует одна линия в излучении, это линия MgII 2789 Å на красном смещении z = 1.018 Å. Объект можно отнести к классу квазаров.

Источник 1511+0518 (1509+054)

На рис. 2 приведен спектр источника в диапазоне частот 0.97–21.7 ГГц, полученный 01.1998. Спектр хорошо аппроксимируется логарифмической параболой $\lg S = 1.410 + 2.756 \lg v - 1.222 \lg^2 v$ с максимумом плотности потока на частоте около 13 ГГц. Особенностями спектра являются отсутствие протяженной компоненты и большое

Имя объекта	Линии в спектре	Длина волны, Å	Z	Спектральный класс	m _O	Плотности потока на 3.9 и 11.1 ГГц в 1998 г., мЯн	α
1	2	3	4	5	6	7	8
0509+0541	нет			Lac	16.0	657 ± 7	0.11
						734 ± 9	
0527+0331	нет			Lac	20.0	886 ± 7	0.31
						1228 ± 15	
0905+0537	MgII	2798/6200	1.216	QSO	18.1	180 ± 10	-0.97
						65 ± 10	
1027+7440	Нβ	4861/5454	0.122	Gal	17.8	225 ± 7	-0.81
	MgI	5175/5806				96 ± 7	
	FeI	5270/5913					
	NaI	5896/6615					
1243+7442	MgII	2798/4986	0.782	QSO	19.3	284 ± 3	0.80
	[OII]	3727/6641				654 ± 6	
	Нγ	4340/7734					
	Нβ	4861/8662					
	[OIII]	5007/8923					
1411+7424	нет			Lac	17.2	85 ± 2	-0.08
						78 ± 4	
1424+0434	нет			Lac	20.1	176 ± 5	0.03
						181 ± 8	
1426+0426	MgII	2798/5646	1.018	QSO	19.1	215 ± 6	-0.70
						103 ± 4	
1511+0518	Нβ	4861/5269	0.084	Sy1	17.7	407 ± 5	0.77
	[OIII]	4959/5376				906 ± 13	
	[OIII]	5007/5428					
	[OI]	6300/6829					
	Нα	6563/7114					
	[SII]	6724/7289					
1923+7404	Нβ	4861/5148	0.059	Gal	16.0	133 ± 15	-0.58
	MgI	5175/5480				72 ± 8	
	NaI	5896/6244					

Таблица 2. Сводные данные оптических и радионаблюдений

значение спектрального индекса в растущей области спектра (в диапазоне 0.97–3.9 ГГц $\alpha = 1.58$, $S \propto v^{\alpha}$). Источник наблюдался с 1984 по 1990 г. на частотах 3.9 и 7.5 ГГц. За указанный период мы не обнаружили статистически значимой переменности на этих частотах. Дальнейшие наблюдения на 6 частотах показали, что слабая переменность потока наблюдается на частотах выше 7.7 ГГц, индекс переменности за 1.5 г. (1997–1998 гг.) на частоте 11.1 ГГц равен V = 0.1.

В 60-дневной программе поиска быстрой переменности в 1998 г. у источника не обнаружено значимой переменности плотности потока на масштабах времени меньше нескольких недель.

Звездная величина объекта, с которым отождествлен данный источник, на *О*- и *E*-картах POSS равна 17.7^{*m*} и 15.3^{*m*} соответственно. Приведенный на рис. 2 оптический спектр получен 7.08.1999 с экспозицией 20 мин. Наблюдаемая система линий соответствует указанным ниже элементам, находящимся на красном смещении с z = 0.084. Это линии излучения Н β 4861 Å, запрещенные небулярные линии [OIII] 4959 и 5007 Å, запрещенная линия [OI] 6300 Å красная линия водорода Н α 6563 Å. Кроме этого присутствует дуплет запре-

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 78 № 2 2001

щенной линии [SII] 6717/6731 Å, который на спектре сливается из-за недостаточного разрешения. Ширина водородных линий FWHM \approx 3000 км/с, запрещенных – FWHM \approx 1000 км/с. Объект можно классифицировать как сейфертовскую галактику типа SyI с красным смещением z = 0.084.

Источник 1923+7404

Спектр источника в диапазоне частот 2.3–11.1 степенной, со спектральным индексом $\alpha = -0.58$. Плотность потока на частоте 3.9 ГГц равна 133 ± ± 10 мЯн.

Оптический спектр объекта, отождествленного с 1923+7404 получен 04.06.1999 с экспозицией 30 мин. Видны 3 линии поглощения: Н β 4861 Å, MgI 5175 Å и NaI 5896 Å на красном смещении z = 0.059. Объект является радиогалактикой 16^m на *O*-карте POSS.

6. ЗАКЛЮЧЕНИЕ

Из 10 исследованных объектов 3 оказались квазарами, 4 – лацертидами, 2 – радиогалактиками и 1 – сейфертовской галактикой. Два источника 0509+0541 и 0527+0331, отождествленные с лацертидами, показывают быструю переменность на масштабах времени от 7 до 50 дней.

В табл. 2 суммированы некоторые данные оптических и радио-наблюдений.

Колонка 1 таблицы содержит имя объекта, колонка 2 – линии, присутствующие в спектре, колонка 3 – длины волн линий в системе покоя и наблюдаемые длины волн, колонка 4 – красное смещение, колонка 5 – тип объекта, колонка 6 – звездные величины, полученные из *O*-карт POSS, колонка 7 – плотность потока радиоизлучения на частотах 3.9 и 11.1 ГГц, колонка 8 – спектральный индекс α между этими частотами.

Авторы весьма благодарны администрации обсерватории им. Г. Аро (Мексика) за поддержку и внимание к настоящей работе.

Данная работа поддержана Российским фондом фундаментальных исследований (код проекта 98-02-16428), грантом "Университеты России" 5561, грантом ГНТП "Астрономия" 1.2.5.1 и частично грантами CONACYT 28499-Е и J32178-Е.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Горшков А.Г.* Конникова В.К. // Астрон. журн. 1995. Т. 72. С. 291.
- Herbig T., Readhead A.C.S. // Astrophys. J. Suppl. Ser. 1992. V. 81. P. 83.
- 3. Чавушян В., Мухика Р., Горшков А.Г. и др. // Письма в "Астрон. журн.". 2000. Т. 26. С. 1.
- 4. Zickgraf F.J., Thiering I., Krautter J. et al. // Astron. and Astrophys. Suppl. Ser. 1997. V. 123. P. 103.
- 5. Pennington R.L., Humphreys R.M., Odewahn S.C. et al. // Publs. Astron. Soc. Pacif. 1993. V. 105. P. 521.
- 6. Амирханян В.Р., Горшков А.Г., Конникова В.К. // Астрон. журн. 1992. Т. 69. С. 225.
- Берлин А.Б., Максяшева А.А., Нижельский Н.А. и др. // Тезисы докл. XXYII радиоастрон. конф. С.-Петербург, 1997. Т. 3. С. 115.
- Боташев А.М., Горшков А.Г., Конникова В.К., Мингалиев М.Г. // Астрон. журн. 1999. Т. 76. С. 7.
- 9. Горшков А.Г., Хромов О.И. // Астрофиз. исслед. (Изв.САО). 1981. Т. 14. С. 15.
- Patnaik A.R., Browne I.W.A., Wilkinson P.N. et al. // Monthly Notices Roy. Astron. Soc. 1992. V. 254. P. 655.
- Browne I.W.A., Wilkinson P. N., Patnaik A.R., Wrobel J.M. // Monthly Notices Roy. Astron. Soc. 1998. V. 293. P. 257.
- Condon J.J., Cotton W.D., Greisen E.W. et al. // Astron. J. 1998. V. 115. P. 1693.
- 13. Seielstad G.A., Pearson T.J., Readhead A.C.S. // Publs Astron. Soc. Pacif. 1983. V. 95. P. 842.
- 14. Lawrence C.R., Bennett C.L., Hewitt J.N. et al. // Astrophys. J. Suppl. Ser. 1986. V. 61. P. 105.
- 15. Амирханян В.Р., Власюк В.В., Спиридонова О.И. // Астрон. журн., 1993. Т. 70. С. 923.
- 16. Горшков А.Г., Конникова В.К. // Астрон. журн. 1997. Т. 74. С. 374.
- 17. Горшков А.Г., Конникова В.К., Мингалиев М.Г. // Астрон. журн. 2000. Т. 77. С.

Radio and Optical Spectra of Objects from Two Complete Samples of Radio Sources

V. Chavushyan, R. Mujica, A. G. Gorshkov, V. K. Konnikova, M. G. Mingaliev, and J. R. Valdez

We present optical identifications and radio spectra for ten radio sources from two flux-density-complete samples. Radio variability characteristics are presented for four objects. The observations were obtained on the RATAN-600 radio telescope at 0.97–21.7 GHz and the 2.1 m telescope of the Haro Observatory in Cananea, Mexico at 4200–9000 Å. Among the ten objects studied, three are quasars, four BL Lac objects, two radio galaxies, and one a Sy 1 galaxy. Two of the sources identified with BL Lac objects, 0509+0541 and 0527+0331, show rapid variability on time scales of 7–50 days.