УДК 524.7

ИССЛЕДОВАНИЕ РАДИОИСТОЧНИКОВ В ОПТИЧЕСКОМ И РАДИОДИАПАЗОНАХ

© 2003 г. В. Л. Афанасьев¹, С. Н. Додонов¹, А. В. Моисеев¹, В. Чавушян², Р. Мухика², Я. Хуарес², А. Г. Горшков^{3*}, В. К. Конникова³, М. Г. Мингалиев¹

¹Специальная астрофизическая обсерватория РАН, пос. Нижний Архыз ²Национальный институт астрофизики, оптики и электроники, Пуэбла, Мексика ³Государственный астрономический институт им. П.К. Штернберга, Москва Поступила в редакцию 15.01.2003 г.

Представлены результаты классификации оптических отождествлений и спектры в радиодиапазоне шести радиоисточников из полной по плотности потока выборки в области склонений 10°-12°30′ (J2000.0). Наблюдения проводились на 6-м телескопе САО РАН в диапазоне 3600-10000 Å, на 2.1-м телескопе в Кананеа (Мексика) в диапазоне 4200-9000 Å и на радиотелескопе РАТАН-600 в диапазоне частот 0.97-21.7 ГГц. Из шести исследованных объектов три классифицированы как квазары, один – объект типа BL Lac, один – абсорбционная радиогалактика, один – эмиссионная радиогалактика. Пять объектов имеют в радиодиапазоне плоские спектры, один – степенной. Все радиоисточники, отождествленные как квазары или лацертиды, имеют переменную плотность потока. Для трех объектов проведено разделение спектров на протяженную и компактную компоненты.

Ключевые слова: активные ядра галактик, квазары и галактики, спектры.

ВВЕДЕНИЕ

В статье представлены результаты классификации оптических объектов, отождествленных с радиоисточниками из полной по плотности потока выборки. Выборка содержит 154 источника с плотностями потоков в каталоге GB6 (Грегори и др., 1996) $S_{4.85} > 200$ мЯн в области склонений $10^{\circ}-12^{\circ}30'$ (J2000.0), прямых восхождений $0-24^{\rm h}$ и $|b| > 15^{\circ}$ и наблюдается на РАТАН-600 с 2000 г. (Горшков и др., 2002). Одной из целей исследования данной выборки является обнаружение космологической эволюции квазаров. Для этого необходимо получить красные смещения большинства объектов, отождествленных с исследуемыми радиоисточниками. С оптическими объектами отождествлено 86% источников выборки с плоскими спектрами и 60% источников с нормальными спектрами. Значительное число отождествленных объектов было классифицировано ранее, классификация остальных объектов проводится на 2.1-м телескопе Обсерватории им. Г. Аро (GHAO) Национального института астрофизики, оптики и электроники (INAOE) в Кананеа, Мексика (Чавушян и др., 2000, 2001, 2002) и 6-м телескопе (БТА) Специальной астрофизической обсерватории РАН в Нижнем Архызе (Россия) (Афанасьев и др., 2003). К настоящему времени нам известны красные смещения (для части лацертид только классификация)

^{*}Электронный адрес: algor@sai.msu.ru

Имя объекта	Радиокоорди	наты J2000.0	Оптика-	-радио	Звездая величина	
	α	δ	$\Delta \alpha$	$\Delta\delta$	R	В
0946 + 1017	$09^{h}46^{m}35 disc069$	$+10^{\circ}17'06''.13$	0 <u></u> °011	$-0^{''}_{}15$	18.7	18.7
1015 + 1227	10 15 44.024	$+12\ 27\ 07.07$	-0.001	0.19	18.2	19.2
1103 + 1158	11 03 03.530	$+11\ 58\ 16.61$	0.005	-0.10	18.4	18.9
1207 + 1211	12 07 12.625	$+12\ 11\ 45.88$	0.008	0.05	18.9	19.0
1306 + 1113	13 06 19.248	$+11\ 13\ 39.79$	0.015	-0.01	13.0	15.4
1315 + 1220	13 15 01.853	$+12\ 20\ 52.63$	0.062	0.10	17.8	18.7

Таблица 1. Координаты и звездные величины объектов

64 объектов с плоскими спектрами и 32 объектов с нормальными спектрами.

ОПТИЧЕСКИЕ И РАДИОНАБЛЮДЕНИЯ

На 6-м телескопе БТА спектры объектов получены 6-8 февраля 2002 г. Использовался спектрограф SCORPIO (http://www.sao.ru/moisav/scorpio/scorpio.html) в моде "длинная щель" и ССDдетектор ТК1024 1024 × 1024 каналов, шум считывания 3 электрона. Спектральный диапазон 3600-10000 Å с дисперсией 6 Å/пиксель. Эффективное инструментальное разрешение примерно 20 Å. Проведена стандартная обработка спектров с использованием математического обеспечения, разработанного в лаборатории спектроскопии и фотометрии САО РАН.

На 2.1-м телескопе GHAO спектры объектов получены 8 марта 2002 г. При наблюдениях использовался LFOSC спектрофотометр, оборудованный CCD-матрицей 600 × 400 пикселей (Зикграф и др., 1997), шум считывания детектора 8 электрон, спектральный диапазон 4200–9000 Å с дисперсией 8.2 Å/пиксель. Эффективное инструментальное спектральное разрешение составляет около 16 Å. Обработка наблюдений проводилась с помощью пакета IRAF и включала в себя устранение фона космических лучей, коррекцию плоского поля, линеаризацию длины волны и калибровку потока.

Наблюдения источников в радиодиапазоне проводились на северном секторе РАТАН-600 в 2000— 2002 гг. на частотах 0.97, 2.3, 3.9, 7.7, 11.1 и 21.7 ГГц в режиме неподвижного фокуса (Соболева и др., 1986). Методика наблюдений и обработки описана в работе Боташева и др. (1999). Параметры используемых приемников РАТАН-600 для Северного сектора приведены в работе Берлина и др. (1997). Ширина диаграммы направленности по прямому восхождению меняется от 11" до 235", по склонению от 1'.4 до 30' на частотах от 21.7 ГГц до 0.97 ГГц. Для калибровки плотностей потоков источников мы использовали радиоисточник 1347+ +1217 с постоянной плотностью потока, точечный для наших диаграмм направленности на всех частотах. Принятые потоки калибровочного источника на частотах 0.97–21.7 ГГц равны 6.25, 4.12, 3.23, 2.36, 2.00 и 1.46 Ян. Процедура разделения радиоспектров источников на протяженную и компактную компоненты описана в работе Горшкова и др. (2000).

КООРДИНАТЫ ОБЪЕКТОВ В РАДИО- И ОПТИЧЕСКОМ ДИАПАЗОНАХ

В табл. 1 приведены радиокоординаты исследуемых объектов на эпоху J2000.0, разность между оптическими и радиокоординатами по прямому восхождению и склонению и звездные величины в фильтрах *R* и *B*. Имена источников составлены из часов и минут прямого восхождения и градусов и минут склонения. Для отождествления радиоисточников с оптическими объектами использовались координаты из каталога JVAS¹ на частоте 8.4 ГГц (Вробел и др., 1998), среднеквадратичная ошибка координат по прямому восхождению и склонению составляет 0.014 угл. сек. Оптические координаты и звездные величины получены из астрометрического обзора USNO (Монет и др., 1996).

РЕЗУЛЬТАТЫ

Спектры объектов, полученные на 2.1-м телескопе в Мексике, приведены на рис. 1, на 6м телескопе БТА — на рис. 2. На рис. 3 представлены спектры источников в радиодиапазоне, в табл. 2 — данные оптических наблюдений. Таблица 3 содержит плотности потоков радиоисточников и среднеквадратичные ошибки потоков в диапазоне

¹JVAS – the Jodrell Bank-VLA Astrometric Survey.

Рис. 1. Оптические спектры объектов, полученные на 2.1-м телескопе (Мексика).

Рис. 2. Оптические спектры объектов, полученные на 6-м телескопе БТА (Россия).

0.97-21.7 ГГц. В последнем столбце дана эпоха наблюдения.

Ниже приводятся замечания по каждому из изучаемых объектов. Во всех формулах аппроксимаций спектров частоты даны в ГГц, плотности потоков в мЯн.

Источник 0946+1017. В оптическом спектре, полученном на 2.1-м телескопе (рис. 1а), присутствует одна сильная линия, отождествленная с линией MgII 2798 Å на красном смещении z = 0.999. В спектре, полученном на 6-м телескопе (рис. 2а) отождествлены две линии: MgII 2798 Å и CIII] 1909 Å. Красное смещение по этим линиям z = 1.007. Объект является квазаром со средним красным смещением z = 1.004.

На РАТАН-600 источник наблюдался два раза в 2000 и 2001 г. С учетом данных Техасского

Рис. 3. Спектры источников в радиодиапазоне. Спектры источников 0946+1017 и 1103+1158 (а, в) разделены на компоненты: исходные спектры показаны крестиками, спектры протяженных компонент штриховыми прямыми, спектры компактных компонент сплошными линиями. Спектр источника 1207+1211 (г) на эпоху 09.2000 г. показан "+", на эпоху 07.2001 г. крестиками, на эпоху 06.2002 г. звездочками.

Имя объекта	Линии в спектре	Длины волн в системе покоя и наблюдаемая, Å	z	Тип объекта	Дата наблюдения	Время экспозиции, мин	Телескоп	\bar{z}
0946+1017	CIII	1909/3830	1.007	QSO	07.02.02	10	БТА	
	MgII	2798/5615						1.004
	MgII	2798/5592	0.999	QSO	08.03.02	90	GHAO	
1015+1227					07.02.02	20	БТА	
					08.03.02	60	GHAO	
1103+1158	CIII]	1909/3660	0.917	QSO	08.02.02	20	БТА	
	MgII	2798/5364						0.915
	MgII	2798/5346	0.911	QSO	08.03.02	60	GHAO	
1207+1211	MgII	2798/5300	0.896	QSO	08.02.02	20	БТА	
	[NeV]	3426/6495						0.895
	[OII]	3727/7065						
	${ m H}\gamma$	4340/8230						
	$H\beta$	4861/9220						
	[OIII]	5007/9490						
	MgII	2798/5288	0.890	QSO	08.03.02	30	GHAO	
1306+1113	$H\beta$	4861/5269	0.084	Abs.G	08.03.02	30	GHAO	
	MgI	5175/5610						0.084
	FeII	5270/5706						
	NaI	5896/6396						
1315 + 1220	[OII]	3727/4700	0.261	Em.G	06.02.02	20	БТА	
	$\mathrm{H}\gamma$	4340/5473						0.260
	$H\beta$	4861/6130						
	[OIII]	5007/6310						
	$H\alpha$	6563/8280						
	[SII]	6724/8480						
	$H\beta$	4861/6120	0.259	Em.G	08.03.02	90	GHAO	
	[OIII]	4959/6249						
	[OIII]	5007/6306						
	$H\alpha$	6563/8272						
	[SII]	6724/8455						

Таблица 2. Данные оптических наблюдений

обзора на частоте 0.365 ГГц (Дуглас и др., 1996) из спектров можно выделить степенную компоненту $S = 200\nu^{-0.85}$ мЯн. После вычитания степенной компоненты спектр компактной компоненты на эпоху 09.2000 г. аппроксимируется логарифмической параболой $\lg S = 2.202 + 0.765 \lg \nu$

 $-0.497 \log^2 \nu$. Спектр имеет максимум на частоте 5.9 ГГц и плотность потока в максимуме 313 мЯн. На рис. За исходный спектр показан крестиками, спектр компактной компоненты сплошной кривой, спектр степенной компоненты штриховой прямой. Спектр компактной компоненты, полученный

Имя объекта	Плотности потоков и ошибки, мЯн							
	0.97 ГГц	2.3 ГГц	3.9 ГГц	7.7 ГГц	11.1 ГГц	21.7 ГГц	JIIUXa	
0946+1017	353 18	355 10	367 05	340 04	311 04	235 12	09.2000	
	358 20	352 10	338 04	280 03	$250\ 03$	181 16	07.2001	
1015 + 1227	185 20	231 11	302 03	420 04	48305	$605\ 25$	09.2000	
		230 26	$263\ 07$	354 15	406 21	490 44	06.2002	
1103+1158	310 21	305 15	312 05	350 04	396 07	490 17	09.2000	
	$305\ 20$	29307	320 04	34506	38805	474 20	07.2001	
		312 19	343 04	386 06	434 09	496 35	06.2002	
1207+1211	112 19	215 10	303 09	338 07	381 05	420 16	09.2000	
	112 20	224 10	$260\ 09$	$265\ 09$	281 05	318 18	07.2001	
		207 21	$220\ 05$	$238\ 07$	320 07	458 42	06.2002	
1306+1113	498 35	290 13	210 06	142 04	112 10		11.2001	
1315 + 1220	298 20	245 18	219 08	205 10	210 07	215 20	06.2001	

Таблица 3. Данные радионаблюдений

после вычитания степенной компоненты из данных на эпоху 07.2001 г., аппроксимируется логарифмической параболой $\lg S = 2.237 + 0.616 \lg \nu - 0.483 \lg^2 \nu$, максимум в спектре сместился на частоту 4.3 ГГц. В данном источнике, вероятнее всего, мы наблюдаем развитие одной вспышки.

Источник 1015+1227. Оба оптических спектра (рис. 16 и 26) не содержат линий, поэтому объект отнесен нами к классу лацертид.

На РАТАН-600 источник наблюдался три раза в 2000–2002 гг. Все полученные спектры растут в сторону высоких частот. На рис. Зб показаны спектры на эпохи 09.2000 г. (верхний спектр) и 06.2002 г. после вычитания из исходных спектров небольшой степенной компоненты $S = 45\nu^{-0.8}$ мЯн. Спектр, полученный 07.2001 г. (Горшков и др., 2002), находится между приведенными спектрами. Плотности потоков на частотах 0.97–2.3 ГГц не изменились в пределах ошибок измерений, максимальное изменение плотности потока от 490 ± 44 до 605 ± 25 мЯн зарегистрировано на частоте 21.7 ГГц.

Приведенные на рис. Зб спектры компактных компонент аппроксимированы логарифмическими параболами $\lg S = 2.110 + 0.670 \lg \nu - 0.120 \lg^2 \nu$ (09.2000 г.) и $\lg S = 2.103 + 0.573 \lg \nu - 0.098 \lg^2 \nu$ (06.2002 г.). Все спектры мы видим в оптически толстой области, максимум плотности потока в спектре находится на частотах значительно выше исследуемого диапазона.

Источник 1103+1158. В оптических спектрах, приведенных на рис. 1в и 2в наблюдается широкая

линия, отождествленная MgII 2798 Å. Ширина линии FWHM \approx 90 Å. В спектре, полученном на БТА, дополнительно отождествлена линия CIII] 1909 Å. По этим линиям измерено красное смещение z = 0.915. Объект является квазаром.

На РАТАН-600 радиоисточник наблюдался три раза: 09.2000, 07.2001 и 06.2002 г. Из исходных спектров выделена степенная компонента протяженной части источника $S = 180\nu^{-0.78}$ мЯн. После вычитания степенной компоненты спектр компактной компоненты в диапазоне 0.97-21.7 ГГц аппроксимируется параболами $\lg S = 2.151 +$ + 0.433 lg ν - 0.035 lg² ν (09.2000), lg S = 2.128 + $+ 0.509 \lg \nu - 0.092 \lg^2 \nu (07.2001)$ и $\lg S = 2.135 +$ $+0.618 \lg \nu - 0.161 \lg^2 \nu$ (06.2002). Максимум в этих спектрах последовательно смещается в область низких частот, наблюдается развитие одной вспышки. Все спектры компактных компонент мы наблюдали в оптически толстой области. На рис. Зв показаны исходный спектр источника на эпоху 06.2002 г (крестики), спектр протяженной компоненты (штриховая прямая) и спектр компактной компоненты (сплошная линия).

Источник 1207+1211. В оптическом спектре объекта, полученном на 2.1-м телескопе (рис. 1г), выделяется одна мощная линия излучения, интерпретированная как линия MgII 2798 Å на красном смещении z = 0.890. Ширина линии FWHM ≈ 55 Å. В спектре, полученном на БТА (рис. 2г), кроме линии магния можно отождествить еще пять более слабых линий: [NeV] 3426 Å, [OII] 3727 Å,

 $H\gamma$ 4340 Å, $H\beta$ 4861 Å и [OIII] 5007 Å. По всем этим линиям красное смещение объекта z = 0.896. Объект классифицирован как квазар со средним красным смещением z = 0.895.

Источник наблюдался на РАТАН-600 09.2000, 07.2001 и 06.2002 г. На рис.ЗГ показаны спектры источника на эти эпохи. Источник имеет переменную плотность потока. Все спектры комплексные и плохо аппроксимируются логарифмической параболой. По-видимому, в данном источнике присутствуют одновременно несколько вспышек. Протяженная компонента в рассматриваемом диапазоне мала. Максимальное изменение плотности потока от 318 ± 18 до 458 ± 42 мЯн наблюдалось на частоте 21.7 ГГц.

Источник 1306+1113. В оптическом спектре источника, полученном на 2.1-м телескопе (рис. 1д) отождествленны линии поглощения $H\beta$ 4861 Å, MgI 5175 Å, FeII 5270 Å и NaI 5896 Å. По всем линиям красное смещение z = 0.084. Объект является абсорбционной эллиптической галактикой.

В диапазоне частот 0.97—11.2 ГГц радиоисточник имеет степенной спектр: $S = 484\nu^{-0.606}$ мЯн (рис. 3д).

Источник 1315+1220. В оптическом спектре объекта, полученном на 2.1-м телескопе (рис. 1е), выделены пять линий излучения, классифицированные как две линии водорода $H\alpha$ 6563 Å, H β 4861 Å, запрещенные линии кислорода [OIII] 4959 Å и 5007 Å и запрещенная линия [SII] 6717 Å. В спектре, полученном на БТА (рис. 2д), кроме указанных линий можно выделить мощную линию [OII] 3727 Å и линию $H\gamma$ 4340 Å. Объект классифицирован как эмиссионная галактика. По всем линиям красное смещение объекта z = 0.260.

Источник наблюдался на РАТАН-600 09.2000 и 06.2001 г. В пределах ошибок измерений плотность потока на всех частотах не изменилась. Спектр показан на рис. Зе. Уплощение спектра к высоким частотам, по-видимому, вызывается компактной компонентой, но в рамках рассматриваемой модели не удается разделить компоненты.

ЗАКЛЮЧЕНИЕ

Три из шести исследованных объекта классифицированы как квазары с близкими по величине красными смещениями 0.895, 0.915 и 1.004, один объект не имеет линий в оптических спектрах и классифицирован нами как объект типа BL Lac. Все эти объекты имеют в радиодиапазоне переменную плотность потока. Спектры объектов 0946+ +1017, 1015+1227 и 1103+1158 разделены на две компоненты: протяженную со степенным спектром и компактную, аппроксимированную логарифмической параболой. У источника 1207+1211 протяженная компонента в рассматриваемом диапазоне незначительна.

Еще один объект квалифицирован как абсорбционная галактика с красным смещением 0.084, имеющая в радиодиапазоне степенной спектр, и один — как эмиссионная галактика с красным смещением z = 0.260, имеющая в радиодиапазоне спектр с уплощением на высоких частотах.

Авторы благодарят администрацию обсерватории Guillermo Haro за поддержку и внимание к настоящей работе. Работа частично поддержана Российским фондом фундаментальных исследований (грант № 01-02-16331), программой Университеты России (проект УР.02.03.005), ГНТП "Астрономия" (проект 1.2.5.1) и CONACYT (гранты № 28499-Е и No J32178-Е).

СПИСОК ЛИТЕРАТУРЫ

- 1. Афанасьев В.Л., Додонов С.Н., Моисеев А.В. и др., Астрон. журн., в печати (2003).
- Берлин А.Б., Максяшева А.А., Нижельский Н.А. и др., Тезисы докл. XXVII радиоастрон. конф. С-Петербург 3, 115 (1997).
- Боташев А.М., Горшков А.Г., Конникова В.К., Мингалиев М.Г., Астрон. журн. 76, 723 (1999).
- Вробел и др. (J. M. Wrobel, A. R. Patnaik, I. W.A. Browne, and P. N. Wilkinson), Astron. Astrophys. Suppl. Ser. 193, 4004 (1998).
- 5. Горшков А.Г., Конникова В.К., Мингалиев М.Г., Астрон. журн. **77**, 407 (2000).
- 6. Горшков А.Г., Конникова В.К., Мингалиев М.Г., Препринт САО №111 (2002).
- 7. Грегори и др. (Р. С. Gregory, W. K. Scott, K. Douglas, and J. J. Condon), Astrophys. J. Suppl. Ser. **103**, 427 (1996).
- 8. Дуглас и др. (D J. N.ouglas, F. N. Bash, F. Bozyan, *et al.*, Astron. J. **111**, 1945 (1996).
- 9. Зикграф и др. (F. J. Zickgraf, I. Thiering, J. Krautter, *et al.*), Astron. Astrophys. Suppl. Ser. **123**, 103 (1997).
- 10. Монет и др. (D. Monet, A. Bird, B. Canzian, *et al.*), (1996), USNO-SA1.0 (Washington DC: U. S. Naval observatory, 1996).
- Соболева Н.С., Темирова А.В., Пятунина Т.В., Препринт САО №32л, (1986).
- 12. Чавушян В., Мухика Р., Горшков А.Г. и др., Письма в Астрон. журн. **26**, 403 (2000).
- 13. Чавушян В., Мухика Р., Горшков А.Г. и др., Астрон. журн. **78**, 99 (2001).
- Чавушян В., Мухика Р., Валдес Х.Р., Горшков А.Г., Конникова В.К., Мингалиев М.Г., Астрон. журн. 79, 771 (2002).