Multi-spin galaxies An observational overview

Alessandro Pizzella Physics and Astronomy Dept, University of Padova, Italy

Summary

- Introduction
- Some history
- The new instruments
- New perspective

What is a multi-spin galaxy (Rubin 1994)

- A Galaxy with more than one rotation axis
- Kinematically distinct gas
- Kinematically distinct stellar components
- Polar ring galaxies
- Decoupled cores
- Counter-rotating galaxies
- (Warped galaxies)

Some History ...

First Multi Spin objects identified are Polar Ring Galaxies.

- NGC 2685 Sandage (1961) "... perhaps the most unusual galaxy in the Shapley-Ames catalog."

Some History ...

- NGC4650A Sersic (1967): "...a peculiar galaxy with very remarkable characteristics."

Acquired material?

A0136-0801 Schweizer + 1983

Then also Ellipticals

Bertola & Galletta (1978)

Minor axis dust lanes

After 50 years...

Whitmore et al. (1990). Photographic atlas ~5% of S0 have a Polar Ring

- 6 confirmed
- 27 very good cantidates
- 73 possible candidates
- 51 possibly related Polar Ring

157 candidates

Moiseev et al (2011): SDSS selected catalogue

- 70 best candidates
- 115 good Polar Ring
- 53 related Polar Ring
- 37 Polar Ring strongly inclined

275 candidates

We need Kinematics

Schweizer et al. (1983) A0136-0801

Possibility of sampling the mass distribution not only in the plane but in a volume.

Testing the shape of the DM potential

We need Kinematics

Whitmore et al. (1987) ESO 415-G26

NGC 4650A

Kinematics HI

Arnaboldi (1997) NGC 4650A

HI velocity field

Elliptical galaxies, a test case: NGC 5077

Bertola, Bettoni et al. (1991)

- Detailed kinematical mapping – long slit spectroscopy along several PAs

- Sampling the triaxial shape of the DM halo (Bertola & Capaccioli 1975)
 and the central mass
 - and the central mass density radial profile

Elliptical galaxies Zeilinger et al. (1996), Buson et al. (1993)

Decoupled cores....

Decoupled cores can only be seen by means of spectroscopy NGC 5813 – E1-E2 Efstathiou et al. (1980)

Decoupled cores....

-25% of elliptical galaxies show in the core a different kinematics than in the body of the galaxy (de Zeeuw & Franx 1991)

IC 1459 – E3 Franx & Illingworth (1988)

- Counter-rotation: is a particular case of multi-spin galaxies: when in one galaxy components with opposite spin co-exits (see review by Corsini 2014)
- Stars vs. Gas
- Stars vs. Stars
- Gas vs. Gas
- Stars vs. (Stars + Gas)
- whole galaxy
- inner/outer region
- About 15% of S0 counter-rotates Pizzella et al.(2004)
- We can detect up to a fraction of 20% (in luminosity) counter-rotating stars

Gas vs Stars counter-rotation

NGC 4546 – SB0 Galletta (1987)

Gas vs Gas counter-rotation

NGC 4826 Sab – Rubin (1994)

Stars vs Stars counter-rotation

NGC 4550 – SB0 Rubin (1992)

Counter-rotation in Ellipticals

Gas-Start counter-rotation in Ellipticals

50% of dust lanes E have counter-rotation: gas acquired from outside

Bertola et al. (1992)

Gas decoupling in S0 galaxies

Kuijken & Merrifield, (1994)

 $24\pm8\%$ gas vs star c.-r.

Gas decoupling in S0 galaxies

Katkov et al. (2014)

70% of isolated S0 galaxies

Gas accreted from outside the galaxies

Gas decoupling in S0 galaxies

Katkov et al. (2014)

The advent of 2D-spectroscopy

Gas vs Gas counter-rotation

NGC 7332 – S0 pec – Perrot-Fabbry

Plana & Boulesteix (1996)

The advent of 2D-spectroscopy Gas – Star counter-rotation

 $NGC\ 2551-S0\$ Sil'chenko Moiseev, Afanasiev (2009) MPFS@BTA

The advent of 2D-spectroscopy Gas – Star counter-rotation

 $NGC\ 2551-S0\$ Sil'chenko Moiseev, Afanasiev (2009) MPFS@BTA

The advent of 2D-spectroscopy Decoupled cores

NGC~4365-E3~ Davies et al. (2008 - SAURON@WHT)

Decoupled cores

NGC 4365 – E3

CRC – Counter-rotating cores

CRC – Counter-rotating cores

Feature	RR	NRR	Comment
NF	171	12	No feature on the map
2M	36	0	Double maxima in the radial velocity profile
KT	2	0	Kinematic twist
KDC	0	11	Kinematically distinct core
CRC	1	7	Counter-rotating core
2σ	4	7	Double peak on a σ map
LV	0	7	Low-level velocity (non-rotator)

CRC – Counter-rotating cores

Feature	RR	NRR	Comment
NF	171	12	No feature on the map
2M	36	0	Double maxima in the radial velocity profile
KT	2	0	Kinematic twist
KDC	0	11	Kinematically distinct core
CRC	1	7	Counter-rotating core
2σ	4	7	Double peak on a σ map
LV	0	7	Low-level velocity (non-rotator)

CRC – Counter-rotating cores

SAURON decoupled cores

SAURON decoupled cores

SAURON 2σ velocity dispersion

SAURON 2σ velocity

NGC 4650A MUSE@VLT Iodice et al. (2015)

Stellar velocity

Stellar velocity dispersion

NGC 4650A Iodice et al. (2015)

Ionized gas velocity
Ionized gas velocity dispersion

IC 719 SCORPIO-2@BAT

Katkov et al. (2013)

IC 719 UKIDSS photometry – Residual of a pure disk

 $\Delta\lambda$ =2.5Å R=2000-3500; σ = 65 - 35 km/s Stellar templates eMiles-MIUSCAT (Vazdekis et al. 2012) pPXF (Cappellari & Emsellem 2004) based code (Coccato et al. 2011)

IC 719: Ca Triplet region

MUSE - IC 719 Ca Triplet region

IC 719 kinematics -Velocity field

IC 719 kinematics -Velocity dispersion

IC 719 spatial distribution of counterrotation

Main/Secondary

IC 719 2d maps

Ha image

IC 719 UKIDSS photometry – Residual of a pure disk

IRAC@2.2m ESO Pizzella et al. 1999

Can we identify some of the counter-rotating galaxies by means of NIR imaging?

MUSE - IC 719 Narrow band imaging

IC 719 BPT diagrams

Katkov, Sil'chenko & Afanasiev (2014)

IC 719 2d maps: Lick Indices

IC 719 ages and metallicities of stellar populations

IC 719 ages and metallicities of stellar populations

Some Results on counter-rotation We can:

- Unblend the two counter-rotating components very well;
- -Measure the kinematics (velocity and velocity dispersion) of the two stellar component and ionized gas with very good precision.
- -Distinguish the stellar population of the two stellar components

The source of the gas?

The source of the gas?

Stars vs. Stars + Gas

NGC 5719 – acquiring HI from NGC 5713 (Vergani et al. 2007)

Bulge – Disk decomposition

Bulge and disk have the same rotation axis but different kinematics

Fabricious et al (2014)

VIRUS-W@McDonald2.7m

Nuclear Stellar disks

Scorza & Bender (1995) Pizzella et al. (2002) Morelli et al. (2004)

Inner Polar Ring – NGC 7217

Sil'chenko et al. (2011)

Conclusions

- Multi-spin galaxies are frequent among early type galaxies
- -The components with different spin with respect to the host galaxy are generally considered as acquired from outside
- The development of IFU spectrographs allows now to study in great detail non only the kinematics of the multi-spin galaxies but also their stellar populations. We are in a new era! (lots of data available, CALIFA, ATLAS3D, MUSE, MPFS...)
- -We can call multi-spin galaxies also galaxies where two components have the same spin direction but different kinematics: Bulges, Nuclear stellar disks.
- GAIA: does our Galaxy have some decoupled components?

Stars vs. Stars + Gas

NGC 3593 – Sa (Coccato+ 2013)

Stellar Population

NGC 5719 – Sab (Coccato+ 2011)

MUSE Results ngc 4191

1'x1' H-alpha

1'x1' muse image

Halpha/[NII]

MUSE - Ionized Gas

Stars vs. Stars NGC 4550 – S0 Rubin 1992

- Galaxies do acquire material during their growth, either in form of gas or/and in form of stars. This may cause a violent change in the galaxy morphology (major merger).

When galaxies acquire gas it may sattle in some equilibrium plane and later form stars.

- Polar rings
- Counterrotating galaxies
- If the gas reaches the nucleus, it may form a nuclear disk (L. Morelli's talk)

S0 galaxies are generally gas-poor systems. If they acquire a small gas cloud it is not whashed out by pre-existing gas and it may be traced.

MUSE- IC 719: Hbeta-Mg-Fe region

- Counter-rotation: when in one galaxy components with opposite spin co-exits
- Stars vs. Gas
- Stars vs. Stars
- Gas vs. Gas
- Stars vs. (Stars + Gas)
- whole galaxy
- inner/outer region
- About 15% of S0 counter-rotates
- We can detect up to a fraction of 20% (in luminosity) counter-rotating stars

- Counter-rotation: when in one galaxy components with opposite spin co-exits
- Stars vs. Gas
- Stars vs. Stars
- Gas vs. Gas
- Stars vs. (Stars + Gas)
- whole galaxy
- inner/outer region
- About 15% of S0 counter-rotates
- We can detect up to a fraction of 20% (in luminosity) counter-rotating stars

The advent of 2D-spectroscopy

Perrot-Fabbry - Plana & Boulesteix 1995

NGC 1052 – E4, two ionized gas components

The advent of 2D-spectroscopy

Perrot-Fabbry - Plana & Boulesteix 1995

NGC 1052 – E4, two ionized gas components

[NII] $H\alpha$ [NII] (km/sec) NGC 4826 PA90° LINE-OF-SIGHT VELOCITY 500 300 100 50 0 -50 -100 DISTANCE FROM NUCLEUS ON SKY (arcsec)

Outer Gas v. Gas counter-rotation

Rubin (1994): ionized gas Braun et al. (1992): HI Rix et al. (1995): stars

MUSE - IC 719: binning

Reconstructed image spaxel 0.2"x0.2", seeing~1.4"

S/N binning

MUSE - IC 719: binning

Counter-rotating Galaxies are (extra)-ordinary laboratories that can be used to study ordinary galaxies.

How did they form?

- Acquisition of gas clouds or filaments (then turned into stars)?
 - Acquisition of gas reach dwarf
 - Minor merger?

Counter-rotating Galaxies are extra-ordinary laboratories that can be used to study ordinary galaxies.

How did they form?

- Acquisition of gas clouds or filaments (then turned into stars)?
 - Acquisition of gas reach dwarf
 - Minor merger?
- Study of the stellar population of the counter-rotating component
- Local Environment (companions, gas clouds)
- Numerical Simulations

The Sample

- We started an observational campaign aimed at studying the stellar populations of all known star-star counter-rotating galaxies

Done

- VIMOS ngc 5719, ngc 4550, ngc 3593
- VIRUS-B ngc 4191
- (ngc 4138 (1.22m Galileo/Asiago))

Just observed! Thour integration each galaxy (one position)

- MUSE

ic719 (Katkov+ 2013), ngc 4473, ngc4191 (Coccato+ 2014)

